Feedlot Session II "Making Better Decisions"

Moderator: Pat Hutson

Economic Analysis in Beef Feedlot Practice

Timothy Jordan, DVM

North Carolina State University College of Veterinary Medicine, Raleigh, NC 27606

The process of converting biology, physiology, and pathology from medical to economic terms can be a complex undertaking. Many veterinary practitioners do this almost subconsciously without complex computer assistance. For these experienced veterinarians, decisions to treat or not to treat and with what drug are often made from the clinical presentation of the animal or animals and the expected outcome or result of various therapeutic options. Determination of the "true economic" cost of animal disease should be an integral component of feedlot animal health.

The problems to overcome when determining the true cost of disease in a feedlot situation are many. The veterinary practitioners must many times overcome the lack of records or records that do not allow for economic evaluation. Other obstacles are the determination of what to measure, quantifying subclinical or inapparent loss, variation from animal to animal or from load to load, and determination of industry standards or comparison factors. These problems coupled with the fact that often the diagnosis of disease is subjective in nature seem to make the precise quantification of disease loss impossible. While these problems are formidable, they are not insurmountable. Let us look at how each of these problems can be overcome and then at a specific situational application.

Lack of Records

Optimally one would need individual sick pull and hospital records for determination of morbidity and the cost of each treated animal. In the face of no records, four options exist for the veterinary practitioner: 1) delay analysis until a record keeping system can be instituted 2) obtain a list of "usual" processing and treatment procedures and the dollar amount of feedlot drugs and medications purchased over a specified time period 3) use USDA, ERS average figures for all animals purchased 4) interview feedlot personnel about the "average" number of treatments per animal and attempt to determine the case fatality rate by working backwards from the number of animals that were removed from the feedlot for death and culling purposes. Each one of these techniques have limitations and a certain amount of inexactness will occur with the use of these techniques. Still these options are better than a figure pulled out of thin air. A technique called sensitivity analysis will be used to quantify the degree of error within an analysis.

Determination of what to measure

When one talks about disease in an economic sense, one is talking about loss of efficiency. These areas of loss can be loosely divided into four sources:

- direct animal health loss: includes treatment and prevention expenses, mortality, and animals that are "chronics" that fail to clinically recover from disease and must be salvaged or realized.
- indirect animal health loss: includes increased labor to handle sick cattle or potentially sick cattle, increased facility costs to handle more than a "normal" amount of sick animals, increased veterinary services, and increases in other consulting fees to address sick animal needs.
- secondary production loss: includes lack of weight gain of morbid animals, increase feed conversion, the increased probability of a "poor-doer". A poor doer is defined as an animal that clinically recovers, but fails to perform as well as its herd mates. There may be a negative loss (and thus a gain) in this category if sick animals fail to eat as much feed as due healthy animals.
- primary marketing loss: this is more of a theoretical loss than a real loss and is defined as the loss of

marketing channels because an animal becomes morbid. Only feedlots that sold into antibiotic free beef markets would result in a channel being closed from illness and subsequent antibiotic usage.

secondary marketing loss: this loss is often inapparent and quite variable and is due to increased days on feed of animals that are morbid, resulting in inconsistent bids for cattle with evidence of higher than expected morbidity. Additional marketing losses occur from carcass or organ condemnations, increased regulatory liability, and other limitations on cattle marketing strategies and programs.

Animal Variation

The genetics of the beef breeds found in the US feedlots make this concern a valid one. No research has been performed that has examined the feedlot health effect of breeding programs. In the absence of this research it is often more prudent to divide feedlot types into production groups so that inter-group comparison and analysis is made more valid; the groups that I use are:

- low stress yearling cattle: examples would be stocker calves from wheat or silage growing programs that have been handled as a group prior to arrival at the feedlot.
- high stress yearling cattle: cattle that are put together from a salebarn or multiple origins would fit into this group.
- salebarn calves: groups that are made up of a majority of freshly weaned calves from one or multiple salebarns.
- ranch or farm fresh calves: single origin calves that are transported directly to feedlot or marketed through a salebarn prior to arrival at the feedlot.

Industry Standards

The lack of good information about the animal health costs of animals continues to be a problem. Industry associations such as the Texas Cattle Feeders Association tabulate this data for its members, but some question the validity of the animal health sections because of the selfreporting means of data collection.

The United States Department of Agriculture Economic Research Service publishes "Costs of Production." This book has all farm crops summarized including the feedlot industry divided into costs of production for all feedlots, commercial feedlots, and farmer-feedlots. The animal health costs are shown as "veterinary and medicine" and are listed in dollar costs per hundredweight of live weight sold. The important production data from these sources are shown in Table 1.

Industry Average (Costs of Productio	on (1,2)
Average Figures:	ERS(85-88)	TCFA(88)
Purchase Wt	638 lbs	714 lbs
Sale Wt	1100 lbs	1138 lbs
Processing (\$/hd)	N/A	\$6.63
Treatment (\$/hd)	N/A	\$1.07
Mortality	N/A	0.92%
Feed Cost of Gain	N/A	\$.4915
Cost of Gain	\$.6014	\$.5210
"Animal Health"	1.10%	1.84%

Table 1 uses average figures from ERS data (1) for the years 1985-1988. These figures are from all feedlots. The figures from the TCFA (2) are twelve month running averages for steers fed at member yards that reported results. Both sets of numbers are variable costs of production and do include a labor and machinery charge. Ownership costs such as taxes and insurance, interest, and general farm overhead are not included in the ERS data, but are implicitly contained in the TCFA data because all costs are reported with the feedyard's markup included. While these data offer a wide variation, they can be used for a standard when no other exists. In the face of no research data, this is better than nothing or a figure pulled from thin air.

Beef Production Economics Software

Using Lotus 1-2-3 (3), a macro-driven spreadsheet was created for the quick determination of economic losses in U.S. feedlots (4). The primary reason for the development of this package was to facilitate analysis by the veterinary practitioner. Specifically, the spreadsheet can be used to put biology into economic format, to focus the practitioner towards cost: benefit decision making, and to offer a means of putting the abstract nature of feedlot consultation services into a more concrete structure. The program is divided into six sections that perform the following tasks:

Section 1. Processing Section - the user chooses procedures, medications, and costs. The program is automatically costed out by total and costs are allocated to health, production, and labor.

Section 2. Mass Medication Section - organized like the processing section, this section accounts for only the mass medication portion of the animal health program. The user must then allocate all mass medication to one of eight disease choices present in the allocation chart.

Section 3. Treatment Section - organized like the previous two sections, the user must determine the choice of treatment for each of the eight diseases and the length of the treatment period.

Section 4. Disease Section - the section forms the basic probability states of occurrence for the eight possible diseases. The user must select the percent morbidity of each disease relative to the total amount of disease, the case fatality rate, the treated death rate and the chronic rate. The section also contains two sub-sections where the user can use referenced performance data for calculation of disease loss due to performance loss and feed intake disruptions.

Section 5. Morbidity Mortality Section - the user determines by average and scenario analysis the total overall morbidity expected. Expected valuation calculations are used to determine the expected morbidity rate by disease. Prior information is used to predict mortality.

Section 6. Economic Analysis - this section pulls appropriate numbers from the previous sections and

with input cost values calculates losses due to treatment, mass medication, performance loss, feed loss (savings), mortality loss, and cull loss.

Examples of these sections are included at the end of this discussion.

Summary

The economic evaluation of disease is an essential component of today's animal health program. Once the practitioner understands the principles that are used in calculation, better medical-production decisions are possible. While this discussion detailed the use of a sophisticated spreadsheet, the practitioner can easily do a crude analysis with pencil and paper once the concepts are clearly understood.

References

1. USDA/Economic Research Service. 1989. Economic indicators of the farm sector. Costs of production-livestock and dairy, 1988. ECIFS 8-3. Rockville, MD. 2. Texas Cattle Feeders Association, 1990. INDEX (Industry Data Exchange) - May 30, 1990. Amarillo, TX. 3. Lotus 1-2-3, Release 2. 1985. Lotus Development Corporation. Cambridge, MA. 4. Jordan, T. 1990. Beef Cattle Production Economics: Fedlot Animal Health Program. In Press.

SECTION 1. EXAMPLE FEEDLOT		SECTION 2.	EXAMPLE FEE	DLOT
PROCESSING PROGRAM - GROUP: NU DATE: 09/11/90		MASS MEDICATION PGM		NUMBER 1 OAKIE STRS
CATEGORY USE DESCRIPTION	COST/HD	PRODUCT US	E DOSE/HD	at some the second
VACCINE 1 IBR-BVD-PI3		OXYTET 100	25	
VACCINE 2 1 7 WAY CLOSTRIDIAL	\$0.25	LA-200	25	
VACCINE 3 1 IBR-BVD-PI3-RSV	\$0.45	PEN G	1 15	\$0.45
BACTERIN 1 PAST-HEMOPHILUS		LONG ACT PEN	15	
BACTERIN 2 LIVE PASTEURELLA		SPECTAM	25	
INT PARA CON 1 IVOMEC	\$2.25	LS 50	15	
EXT PARA CON CO-RAL		NAXCEL	5	
IMPLANT 1 1 RALGRO		ERYTHROMYCIN	15	
REIMPLANT 1 RALGRO		TYLAN	15	
VITAMIN 1 1 A & D		SULFA BOLUS	5	
VITAMIN 2 1 B 12		VITAMIN B 12	1 10	\$0.20
ANTIBIOTIC 1 PENICILLIN		VACCINE 1	2	
ANTIBIOTIC 2 LA-200		VACCINE 2	2	
CHARGE 1/HD 1 CHUTE CHARGE		CHARGE 1/HD	1	
CHARGE 2/HD 1 REVACCINATION CHA		CHARGE 2/HD		
CHARGE 3/HD 1 REIMPLANT CHARGE		CHARGE 3/HD		
OTHER 1 1 REVACCINATION: IB	R-BVD-PI3 \$0.25	ABIC FEED 1	1	
OTHER 2		ABIC FEED 2 		
		11		
COST OF PROCESSING PROGRAM PE	R HD \$6.33	COST OF MASS MEDIC/	TION PGM	PER HEAD \$0.65
PROCESSING PROGRAM - HEALTH PE	R HD \$3.20	MASS MEDICATION PR	4 - INJECT	PER HEAD \$0.65
PROCESSING PROGRAM - PRODUCTION PE	R HD \$2.13	MASS MEDICATION FG	1 - FEED	PER HEAD
PROCESSING PROGRAM - LABOR PE	R HD \$1.25	MASS MEDICATION PG	1 - LABOR	PER HEAD
		 MASS TREATMENT FOR		
			BY THE DISEA	
		FIRST PULL RESP	1 11 112 1132	
		RESP REPULL		
		RESP RETREAT		
		BLOAT		
		DIARRHEA		
		RET PLACENTA		
		ASSISTED CALVING		
		FOOT ROT		

BEEF FEEDLOT ECONOMICS - ANIMAL HEALTH PROGRAM

SECTION 3.

......

EXAMPLE FEEDLOT

TREATMENT PGM		VE WEIGHT	:		400	LBS								
DATE 09 PRODUCT	0/11/90 UNIT	CWT	INJECT				Inn	loot	IRLOAT			ICALV	100	
PRODUCT	COST	DOSE	INJECT			•			BLOAT	SCOURS	K/P 	CALV	FR	PRODUCT
				DAYS	12-2	3	3.7	3.7	1	1	 	1	1	1
OXYTET 100	\$0.03	5	\$0.58			1.00	1		1	1		1	1	OXYTET 100
LA-200	\$0.10	5	\$1.96			0.30	1	i	i	i	1	1	i	LA-200
PEN G	\$0.02	3	\$0.24			1	1	1.00	i	i	i	i i	i	PEN G
LONG ACT PEN	\$0.03	2	\$0.24			i	i		i	i i	i	1	i	LONG ACT PE
SPECTAM	\$0.06	5	\$1.20			i	1.00	i	i	i	i	i	i	SPECTAM
LS 50	\$0.06	5	\$1.20			i		i	i	i	i	i	i	LS 50
NAXCEL	\$0.40	1	\$1.60			i	1.00	i	i	i	i	î –	i	NAXCEL
ERYTHROMYCIN	\$0.06	3	\$0.72			1.00	i	i –	i	i	i	i	i	ERYTHROMYCI
TYLAN	\$0.06	3	\$0.72			i	i	i	i	i	İ	i	i	TYLAN
SULFA BOLUS	\$1.00	0.5	\$2.00			i	i	Ì	i	i	Ì	1	i	SULFA BOLUS
VETISULID	\$0.07	10	\$2.80			Ì	Ì	1.00	1	Ì	Í	Í.	Ì	VETISULID
ANCOSUL	\$0.06	6.25	\$1.50			1	1	1	1	1	1	1	1	ANCOSUL
AMPICILLIN	\$0.30	3	\$3.60			1	1	1	1	1	1	1	1	AMPICILLIN
VITAMIN	\$0.05	2.5	\$0.45			1.00	1.00	1.00	1	1	1	1	1	VITAMIN
SUPPORTIVE	\$0.05	2	\$0.36			1.00	1.00	1		1	1	1	1	SUPPORTIVE
HOSP CHG	\$1.00 P	ER HEAD	\$1.00			1.00	1.00	1.00	1	1	1	1	1	HOSP CHG
OTHER CHG	\$0.50		\$0.50			1.00	1.00	1.00	1	1	I	1	1	OTHER CHG
						1	1		1	1	1	1	1	1
										-		-		•
						ļ					ļ			Į.
COST OF TREATM						•	\$5.11	•	•		l	1		1
TOTAL COST OF	TREATMEN	T FOR THE	RAPY LE	NGTH		\$12.59	\$18.91	\$18.46			1			1

COMPLETE COST = \$ 49.96 HEALTHY COST = \$ 13.40 BEEF FEEDLOT ECONOMICS - ANIMAL HEALTH PROGRAM

DATE	LE DISE	ASE BREAKDOWN 09/11/90	GROUP: N	NUMBER 1 OAKIE S	STRS			
	••		MORBIDITY DISTRIBUTION	CASE FATALITY RATE	DEATH RATE	UNTREATED	DEATH RATE	CULL/CHRONI
DISEASE 1=	RESP	FIRST PULL RESP	87%	5%	1.27%		1.52%	1.02%
DISEASE 1=		RESP REPULL	9%	10%	0.26%		0.26%	0.18%
DISEASE 3=		RESP RETREAT	4%	1 20%	0.23%		0.23%	0.16%
DISEASE 4=		BLOAT						
ISEASE 5=		DIARRHEA					1	
DISEASE 6=							1 1	
DISEASE 7=		ASSISTED CALVIN			E.			
DISEASE 8=		FOOT ROT						
			100%		1.77%	0.25%	2.02%	1.35%
CALVES WITH CALVES WITH * Reference * Reference	ILLNESS Jordan TXAES 1	OF ALL DEGREES	2.75 2.35 2.75 2.40		1.96 1.39	N/A 70.92%		N/A N/A
* Personal S	87.27%	< INPUT VALUE 1	IS EXPRESSED AS	S PERFORMANCE OF	F MORBID CASES	AS A % OF HE	ALTHY CASES	
* Personal \$ VALUE USED		< INPUT VALUE 1			F MORBID CASES	AS A % OF HE	ALTHY CASES	
* Personal S VALUE USED FEED COST OF	SICK A	NIMALS - LIGHTWEIG			F MORBID CASES	AS A % OF HE	ALTHY CASES	
* Personal S VALUE USED FEED COST OF	SICK A	NIMALS - LIGHTWEIG	GHT CALVES ON (F MORBID CASES	AS A % OF HE	ALTHY CASES	
Personal S VALUE USED FEED COST OF FEED INTAKE FEED INTAKE	SICK A AS % OF OF HEAL	NIMALS - LIGHTWEIG	GHT CALVES ON (MEAN SD		F MORBID CASES	AS A % OF HE	ALTHY CASES	

SECTION 5.	EXAMPLE FEEDLOT										
MORB:MORTALITY PRO	DJECT GROUP:	NUMBER				1			•	TOTALS	
DATE 09/11/90									I		
									PROJECT		
PREDICT MORBIDITY	FOR ALL CAUSES								30%		
					-	-		-			
	FIRST PULL RESP								26.10%		
	RESP REPULL								2.70%		
		4%	1.00%	1.60%	0.20%	0.20%	0.20%	0.20%	1.20%	1.80%	0.40%
% ANIMALS WILL GET	-	! !				1					
% ANIMALS WILL GET		1 1						1			
% ANIMALS WILL GET		1 1									
% ANIMALS WILL GE		1 1									
% ANIMALS WILL GE	ſ										
		100%									
SUMMARY OF EXPECT	ED/PREDICTED RESULTS	5				1					
HOW OFTEN WILL PRO	DJECTED CASE SCENARI		?	68%	ĺ	i					
HOW OFTEN WILL WO	RSE CASE SCENARIO OC	CCUR?		16%		İ					
HOW OFTEN WILL BE	ST CASE SCENARIO OCO	CUR?		16%		1					
						1					
	EXPECTED MORBIDITY	RATE	PREDICTED	MORTALI	TY RATE						
FIRST PULL RESP	25.4%			1.52%							
RESP REPULL	2.6%			0.26%							
RESP RETREAT	1.2%			0.23%							
BLOAT											
DIARRHEA						1					
RET PLACENTA											
ASSISTED CALVING						1					
FOOT ROT						1					
TOTAL	29%	1	TOTAL	2%		1					
		•••••				-					

SECTION 6.	EXAMPLE FEEDLOT	TO UPDATE	INPUT VALU	JES ALT R				
ECONOMIC ANALYSIS OF DATE 09/11/90		GROUP:	EXAMPLE FEI	EDLOT				
	TMT MASS M	D PERFORM	FEED	CULL	MORT	TOTAL	LOSS/	LOSS/
	LOSS LO	S LOSS	LOSS	LOSS	LOSS	LOSS	HEAD	CASE
FIRST PULL RESP	\$3.20 \$0.	5 \$12.20	(\$1.96)	\$3.43	\$1.43	\$18.95	\$18.95	\$74.60
RESP REPULL	\$0.50	\$1.26	(\$0.20)	\$0.59	\$0.25	\$2.40	\$2.40	\$91.19
RESP RETREAT	\$0.22	\$0.56	(\$0.09)	\$0.53	\$0.22	\$1.43	\$1.43	\$122.73

	•••••		-	••••	•••••					
TOTALS									\$22.78	
INPUT VALUES						REFERENCE				
NUMBER OF CATTLE		1	HEAD			USE 1 HEAD	FOR QUIC	K CALCULA	TION	
AVERAGE ARRIVAL WEIGHT		400	LBS			USE PURCHA	SE OR PAY	WEIGHT		
PURCHASE COST/CWT		\$95.00	PER	CWT		USE PURCHA	SE PRICE			
COST FOR FINISH RATION	(DM)	\$125.00	PER	TON		} IF UNKNO	WN USE CO	ST OF GAI	N FIGURE:	
EXPECTED F/G (DM)		6.00	LBS	FEED/LB	GAIN	}\$60.14/CW	T USDA ER	s 1985-19	88 VARIABL	E COG
OTHER DAILY COSTS (YAR	DAGE)	\$0.63	PER	DAY) OFTEN US	ED FOR AD	JUSTING F	OR NON-FEE	D COST
EXPECTED ADG		2.80	PER	DAY		CALVES 2.2	5-2.8 & Y	EARLINGS	2.50-3.25	LBS/DAY
EXPECTED SALE WEIGHT		1000	LBS			1000-1050	= HFRS &	1100-1150) = STRS	
EXPECTED SALE PRICE/CW	т	\$65.94	PER	CWT		\$65.94/CWT	USDA ERS	1985-198	38 LIVE CAT	TLE \$
EXPECTED WEIGHT OF CUL	LS	400	LBS			CULLS/CHRO	NICS EQUA	L TO INCO	DMING WEIGH	T
EXPECTED SALE PRICE/CW	T CULLS	\$45.00	PER	CWT		\$45.00/CWT	AVERAGE	CULL COW	\$ 1987-198	8
EXPECTED SALE DOF FOR	CULL	75	DOF			60-90 DAYS	OFTEN US	ED		
EXPECTED AVE DAY OF MO	RBIDITY	10	DOF			10-14 DAYS	OFTEN US	ED		
EXPECTED AVE DAY OF MO	RTALITY	30	DOF			25-35 DAYS	OFTEN US	ED		
COST OF LOST INTEREST	NOT INCL	UDED								

COPYRIGHT 1990 TIMOTHY JORDAN, DVM
