Time-course RNA-Seq analysis defines immunological and inflammatory mechanisms influenced by bovine respiratory disease

M. A. Scott,¹ DVM, PhD; A. R. Woolums,² DVM, PhD, DACVIM, DACVM; A. C. Thompson,² DVM; B. B. Karisch,³ PhD

¹Veterinary Education, Research and Outreach Center,

Texas A&M University and West Texas A&M University, Canyon, TX 79015 ²Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS 39762 ³Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS 39762

Introduction

Bovine respiratory disease (BRD) remains the leading disease in beef cattle. Host gene expression at facility arrival may indicate BRD risk, however, time-course RNA-Seq could define how BRD development influences immunological and inflammatory responses. Here, we evaluated blood transcriptomes of highrisk beef cattle at 3 timepoints to illustrate BRD-associated host response.

Materials and methods

Sequenced mRNA from 36 cattle (2015: n = 9; 2017: n = 27) across 3 timepoints (n-samples = 100; days 0, 28, 63) were processed through ARS-UCD1.2 reference-guided assembly (HISAT2/ Stringtie2). Cattle were categorized into BRD-severity cohorts (Healthy, n = 14; Treated_1, n = 11; Treated_2+, n = 11) via frequency of antimicrobial treatment. Assessment of time-course gene expression patterns within each BRD cohort were modeled via auto-regressive hidden Markov models (EBSeq-HMM; Posterior probability > 0.5, FDR < 0.01). Linear mixed models (glmmSeq) and post-hoc analyses (edgeR quasi-likelihood) identified differentially expressed genes between and across cohorts over time (FDR<0.10).

Results

A total of 2,580, 2,216 and 2,381 genes changed significantly across time within Healthy, Treated_1 and Treated_2+ cohorts, respectively. In all 3 cohorts, gene expression related to neutrophil response, cytokine production, and type-I interferon response decreased over time. Production of specialized resolving mediators (SPMs) decreased at d 28, then increased by end-of-study (d 63) across all 3 cohorts. SPM production and alternative complement were differentially expressed between Healthy and Treated_2+ at d 0, but identical between all three cohorts by d 63.

Significance

At-arrival SPM expression, not directionality, differentiated Healthy and Treated_2+ cattle. Host gene expression appeared most variable at arrival, then stabilized between all 3 BRD cohorts overtime. This study demonstrates host expression patterns best define severe BRD development at facility arrival.

