


and the decisions generated from that model. 
In some situations defining clinical states may be com­

plete with only "sick" and "normal". However, other situa­
tions may call for more refined categories such as "full 
recovery", "partial recovery", "recovered but relapsed", 
"no recovery", and "death". Other considerations, such as 
any prognostic value of tests for herd-level decisions, ani­
mal welfare, and regulatory limits can sometimes play a 
role in determing the final choices made. 

Structuring Clinical Decisions Under Uncertainty 

In structuring a decision problem we aim to keep the 
different types and timing of events in proper sequence. In 
the process of evaluating complex decisions, each contin­
gent on information available at that specific time, we form 
a "road-map" of our decision flows, often in the form of a 
decision tree. 

The decision tree below displays the three basic parts 
of any decision diagram. By convention, decision flow di­
agrams are read from left to right. The first point to note is 
that it branches at each alternate event or node, making a 
winding trail of the sequential events that comprise one 
potential path. Second, the tree explicitly lists the probabi­
lities of each event, forcing us to consider the uncertainty 
inherent in the choices. Third, it quantitatively describes 
the outcome values we placed upon the endpoints of the 
different branches, again, obliging us to evaluate the out­
comes and the best means of achieving, or prescription for 
attaining, a given desired outcome. 

DECISION TREE #1 - Hypothetical de­
cision process for treating a disease. The 
choice between intervention (TREAT) 
and no intervention (NO TREAT). The 
outcomes considered in this example are 
therapeutic success (CURE), recovery 
without intervention (SP. RECOV.), and 
failure to respond to either selected ac­
tion (DISEASE). Each outcome has a 
unique chance of occurring (P(xxx)) and a 
separate endpoint value (VALUE x). The 
decision tree components are more fully 
described below. 

CURE 
+------------>:: VALUE c 

/\ : P(CURE) 
TREAT / \ - ----+ 
+-- ->< Cl > 
: \ / - ----+ 
: \/ : DISEASE 

+-----+ : +------------ >:: VALUE dl 
DISEAS E : :------+ 1 - p(CURE) 
------- >: D : 
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: :------+ SP. RECOV. 
+-----+ : +- - ---------->:: VALUE sr 

: /\ : p(SP. RECOV) 
: / \-----+ 
+--->< C2 > 

NO TREAT \ /-----+ 
\/ : DISEASE 

+------------ >: : VALUE d2 
1 - p(SP. RECOV) 

Branch Point Nodes 

Decision Nodes (Depicted by the square labelled D) 
Earlier we discussed two kinds of clinical events: 

those we control, and those we don't control. The decision 
nodes indicate the points in the process where the decision 
maker can have an effect on the outcome, by making a de­
cision. In a clinical setting this usually mean either choos­
ing to gather more information or opting for a treatment 
proiocol. The actions branching from a decision node must 
be exhaustive of the actions available from that point. De­
cision nodes are depicted, by convention, as squares along 
the branches of a decision tree. 

Chance Nodes (Depicted by the "diamonds" labelled Cl 
and C2). 

Chance nodes are normally depicted as circles along a 
tree's branches. For printing reasons, here they are dia­
monds. They portray the uncertain points in the process, 
the events which we cannot control. These can be how a 
blood test will turn out, or list the possible results of a 
given treatment. Branches off a chance node describe all 
the events possible at that point (their combined probabili­
ties sum to 1.0) each with a unique and explicit probability. 
These give decision trees probabilistic power, plus they ex­
plicitly state the working probabilities. 

Paths (Depicted by the dashed lines) 
A path, in decision theory parlance, represents a 

stream of events over time. Usually a path is bounded on 
one end ( the end signifying the start of the process) by a 
decision node, and at the other by a final outcome event. 
In between these two markers can be any number of deci­
sion nodes and chance nodes. Each path in a tree is 
unique, made up by a special combination of decisions and 
probabilities. Each path represents the alternative choices 
and events that can occur. 

Outcomes Values (Listed as "VALUE x" to the far right of 
the tree) 

For a decision diagram to be of use, the various end­
points must be differentiated from each other. Usually this 
is done by assigning a cash value to each endpoint. A 
healthy laying chicken has some value, as does a market 
pig, or a bred cow. How much value depends on the indi­
vidual situation described by the path that led to the out­
come in question, or by some overall rule or pricing 
scheme outside the decision process. But not all endpoints 
are best described in strictly economic terms. For example, 
an endpoint may be best described as "80% two year survi­
val" as opposed to "20% two year survival". When dealing 
with wildlife, herd-level decisions, or pets, this is likely to 
be true. 

Adjusting for Probabilities and Non-Economic Concerns 

If you had only a 20% chance of receiving a $500 bill, 
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it is unlikely you would be willing to pay $500 for that 
chance. This is because the expected monetary value 
(EMV), a measure of the action's "average" return, is only 
$100. This is the product of an event's intrinsic value and 
the likelihood of the event occurring. 

In general, the EMV of a path is found by multiplying 
the probability of that event coming to pass against the 
outcome value for that path. If everyone behaved perfectly 
rationally in making decisions, then all decision trees 
would be solved by using EVM's. But we don't, so they 
aren't. 

Means of "adjusting" EMV's to a situation not well 
described by pure cash values involve Utility Theory. This 
is a discipline of its own aimed at scaling values of com­
pletely disparate items and concepts such as quality of life, 
and perceptions of risk, danger, and challenge. 

In the field of food animal medicine a powerful set of 
consumer utility values is found when describing "organi­
cally raised beef', "range fed chickens", and consumer 
perceptions of food safety and quality. Other consider­
ations, such as social values (is a manatee worth only what 
one could get by rendering it?), can impact an outcome 
value. Utilities can be very complex to develop, and very 
powerful tools in decision analytic problems. 

Building Decision Trees 

The first step in building a tree is to diagram the 
events in sequence. Start with an event you influence, i.e., 
a decision node. Depending on the problem at hand, the 
next node could be a chance node, another decision node 
(if so, combine the two into one node - they represent only 
one decision if nothing happens between them), or a termi­
nal node (an end point). From chance nodes, branches 
may again go to any of the three types of nodes. 

The process continues, with each node representing 
some singular occurrence in a whole series of events. Even­
tually the path ends at a terminal node, as many terminal 
nodes as there are unique paths in the diagram. 

The tree is solved in reverse chronological order (right 
to left). Outcome end values are multiplied by their re­
spective probabilities. All branches that exit a node are 
similarly evaluated, and the results are summed across 
branches, creating the overall EMV of that chance event. 

DECISION TREE #2 - Continuation of 
hypothetical decision process for treating 
a disease. Probabilities of each chance 
event have been added (0.6 = 60% 
chance of CURE, given the animal was 
TREA Ted) as have endpoint values ( a 
CUREd animal is worth $900). Expected 
Monetary Values of the chance nodes are 
determined by multiplying the endpoint 
values against their respective probability 
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ofoccurrence(60%*$900 + 40%*$400 = 
$700). 

0.6*900 
0.4*400 

$700 CURE 
I +------------>:: 

/\ : 0. 6 
TREAT / \-----+ 
+--->< Cl > 
I \ /-----+ 
: \/ I DISEASE 

+-----+ : +------------>:: 
Dl SEJ\SE : : ------+ 0. 4 
------- >: D : 

: : ------+ 
+-----+ : 

sr. RECOV . 
+------------>:: 

I 
I 
I 
I 

/\ : 0.1 
I \-----+ 

+--- >< CZ > 
NO TREAT \ /-----+ 

\/ : DISEASE 
\ +------------ >:: 

0.1*600 $510 0.9 
0.9*500 

$900 

$400 

$600 

$500 

The process of multiplying probabilities against outcome 
values is called averaging out (as it produces a weighted 
average of the values at the tips of the paths radiating from 
a given node), and is simply a collapsing of the probabili­
ties at chance nodes. 

This averaging out continues until the decision maker 
"backs up" to a decision node. Just as was the case in 
drawing the tree, in analyzing the diagram a decision must 
now be made. The decision maker must choose between 
the chance nodes radiating from a decision node, the crite­
rion being to select the branch that has the highest EMV, 
pruning out the other, suboptimal, paths. 

The surviving EMV, by definition the most advanta­
geous value, is then assigned to that decision node. This 
pruning process is called folding back a tree. Unlike the 
demonstration tree shown here, most clinical situations re­
quire a number of decisions to be made. In such a scenario, 
the next node to the left of an intermediate decision node 
will be another chance node, and it is treated just as were 
the chance nodes in the previous paragraph; its value will 
be the value of the decision node just selected. 

Eventually, the process backs up the tree to the origi­
nal decision node. Simply fold back at that point, selecting 
the most advantageous of the branches radiating there­
from. That branch is the optimal choice to make from that 
first decision point. The subsequent optimal path that fol­
lows forms the best clinical strategy to take, given the be­
ginning conditions. 

DECISION TREE #3 - Conclusion of 
the hypothetical decision process for 
treating a disease. The EMV's for the two 
chance events are subjected to the deci­
sion rule of taking the highest EMV. The 
appropriate choice is to select the 
TREAT option, as it is worth, on average, 
$190 more ($700-$410 = $190) to us than 
the NO TREAT option. The choice is de­
picted by drawing a series of slashes 
across the non-selected path. 
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$700 CURE 
I +------------>:: $900 

/\ : 0. 6 
TREAT / \----+ 

Decision Value +--->< Cl > 
$700 : \ /----+ 

: \/ : DISEASE 
+-----+ : +------------>:: $400 

DISEASE : : ------+ 0. 4 
------->: D : : :------+ SP. RECOV, 

+-----+ : +------------>:: $600 
//Ill/I /\ : 0.1 

: / \----+ 
+--->< C2 > 

NO TREAT \ /----+ 
\/ : DISEASE 

\ +------------>:: $500 
$510 0.9 

Sensitivity Analysis of Decision Trees 

When a formal structure is laid over a problem, it is 
advisable to test the findings by conducting a sensitivity 
analysis. This is accomplished by systematically varying the 
structural assumptions and probabilities within the di­
agram to see if the conclusions change. The process can be 
tedious if done by hand, however electronic spreadsheets 
perform the task easily. All analyses in this paper were ac­
complished using the LOTUS 1-2-3R electronic 
spreadsheet (9). 

If the decision resulting from a decision tree does not 
change over a broad range of likely probabilities, the tree is 
"stable". If the decision changes, that is, if the tree is not 
stable, then one must be careful making recommendations. 
An unstable tree may represent true instability in the situa­
tion, or may simply be pointing to the weakest points in our 
knowledge, a capability drawn from the explicit nature of a 
decision tree's structure. 

TABLE 1. SENSITIVITY OF THE MODEL ON PROB­
ABILITIES OF OUTCOMES FOR THE HYPOTHETICAL 
DECISION PROCESS ON TREATING A DISEASE 

New New Expected Monetary 
Chance of Chance of Value of the TREAT 

CURE DISEASE Chance Node 
--------- ---------- -------------------

0.8 0.2 720 + 80 = $800 
0.6 0.4 540 + 160 = $700 
0.4 0.6 360 + 240 = $600 
0.2 0.8 180 + 320 = $500 

New New Expected Monetary 
Chance of Chance of Value of the NO 

SP RECOV DISEASE TREAT Chance Node 
--------- ---------- -------------------

0.8 0.2 480 + 100 = $580 
0.6 0.4 360 + 200 = $560 
0,4 0.6 240 + 300 = $540 
0.2 0.8 120 + 400 = $520 

As demonstrated in the table above, the model ap­
pears stable when estimated treatment success rates re­
main at, or above, 40%, even if the spontaneous recovery 
rate reaches 80%. That is, with the endpoint values as list­
ed in the decision tree, the EMV for TREAT, given 
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P(CURE) = 0.4, exceeds the EMV of NO TREAT, given 
P(SP RECOV) = 0.8. This is evidence that the decision 
tree is stable with regards to probability estimates. I will 
leave it to the reader to perform the sensitivity analysis on 
changing the end point values. (Q) 

n 
~ Application of Decision Analysis Techniques: Case Study '-< 

on Feedlot Production Medicine ~ · 

Problem Description 
Feedlot veterinarians are often faced with making a 

decision on mass medicating a group of steers. The situa­
tion usually arises within a week of the animals' arrival, 
and often the inciting event is management's recognition 
of the onset of respiratory disease in some animals in the 
group. 

Mass medication has its proponents and its dectrac­
tors. Proponents claim it 1) can save labor costs, 2) could 
lessen stress, 3) may halt inapparent disease before perma­
nent damage is done, and 4) might prevent future losses. 
Detractors argue it 1) may expose animals to un-needed 
antibiotics, 2) could produce high medication costs, 3) can 
promote resistant organisms. and 4) might increase rates 
of chronic poor-doers and their losses. 

Both arguments are prefaced with qualifiers -- can, 
could, may, might -- acknowledging that interactions of di­
sease severity and incidence, together with responses to 
treatment, determine a program's value. Hence, at certain 
times and conditions either camp can be correct. The 
choice depends upon many chance events; the kind of situ­
ation for which decision analysis was developed. 

Identify the Decision Problem 
The decision is whether to mass treat animals showing 

respiratory disease within several days of arrival. We speci­
fy four outcomes, based on mass medication or none: 
(1) steers remain healthy through the feeding period, 
(2) steers contract respiratory disease but recover after 
treatment, (3) steers contract disease, are treated, yet be­
come chronically ill, and (4) steers die from respiratory di­
sease in spite of treatment. 

For this example, assume the operation grows out 
holstein steers with an average incoming weight of 300 
pounds ( range = 260-350), shipped in from other farms. 
Records indicate performance of animals from different 
sources varies, so that data will be included. Records also 
indicate incoming weight and month of arrival play a role 
in respiratory mortality, so that data will also be included 
in the decision process. Lastly, assume we are dealing with 
two feedlots under the same ownership, but with differing 
facilities and personnel. This will affect disease rates and 
treatment responses, so data on which lot is involved in the 
choice should be included. 

In summary, the interactions believed to effect the 
feedlots' incidence of respiratory mortality are: 1) incom-
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ing weight, 2) season, 3) farm of origin, and 4) arrival feed­
lot. Our records analysis will determine if our common 
sense is correct. Once we know disease incidence probabil­
ity, we can apply known costs to calculate the relative re­
turns under a variety of scenarios. 

We have standard feedlot data on average costs of 
medicating hospitalized animals and on the results after 
treatment (3-6). We assume these costs will be constant 
over time and treatment. While this may be a false assump­
tion, it is the best we can get from feedlot records, and can 
be tested by sensitivity analysis. We also can develop the 
average carrying costs, average feed consumption, the av­
erage market values of different classes of animal (TABLE 
2), and the returns to management for either lot. These 
average values are calculated in this problem using the 
methods described by Tim Jordan (7), in his paper from 
these proceedings. 

TABLE 2. COSTS TO BE ENTERED INTO THE DECISION TREE. 
Data adapted from USDA and Texas Cattle Feeders five 
year averages. 

Avg Value Of Healthy Animals ($/Cwt) 
Cost To Produce Healthy Animal 

Value Of Healthy Animal, Full Gain 

Avg Value Of Chronic Animals ($/Cwt) 
Cost To Produce Chronic Animal 

Value Of Chronic Animal, No Gain 

Cost To Hass Medicate, Per Head : 
Average Cost To Treat & Cure : 
Average Cost To Treat a Chronic Animal 

Structure the Decision Problem 

DOLLARS 

65.94 
360.84 
659.40 

45.00 
140. 00 
180.00 

1. 50 
13,60 
52.00 

Structuring the decision problem is often the easiest 
part of the process. The tree diagram itself will be simple, 
starting with the decision to mass medicate on the far left, 
and ending on the far right with the categories of outcomes 
(TREATED, OK; TREATED, CHRONIC; TREATED, 
DIE; NOT TREATED, OK) for both the non-mass medi­
cation option and the mass medication option. The proba­
bility codes for each possible option-specific outcome are: 

P[DZ]: The probability of respiratory disease oc­
curring without mass medication. 

P[OK]: The probability of full recovery post treat 
ment without mass medication. 

P[CH]: The probability of becoming a chronic ill 
case without mass medication. 

P[DOA]: The probability of dying despite treat-
ment without mass medication. 

Probabilities listed in the decision tree with an "M" follow­
ing them describe the same events as above, but reference 
the situation when mass medication is undertaken. 
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MASS MEDICATION DECISION TREE# 1 

NO 
MASS 

MEDICATE 

TREATED, OK 
+------------------>:: VALUE 
: P[OK) 
I 
I 

/\ 
RESPIRATORY / \ TREATED, CHRONIC 
DISEASE +----->< C2 >---------------->:: VALUE 

P[DZ) 

/\ 
I \----+ 

\ I P[CHJ 
\I 

I 
I 

: TREATED, DIE 
+------------------>: : VALUE 

P[DOA] 

CHOICE +-->i Cl > NOT TREATED, OK 
: \ /--------------------------------->:: VALUE 
: \/ NO RESP DISEASE 1-P[DZ] 

+-----+ : 
: : --+ 

- : Dl : 
: : --+ 
+---- - + 

MASS 
MEDICATE 

CHOICE 

TREATED, OK 
+------------------>:: 
: P(OK)M 
I 
I 

RESPIRATORY /\ 
DISEASE / \ TREATED, CHRONIC 

P[DZ)M 

+----->< C4 >---------------->:: 
\ I P(CH]H 
\/ 

I 
I 

: TREATED, DIE 

VALUE 

VALUE 

+------------------>:: VALUE 
P[DOA)M 

/\ 
I \----+ 

+-->< C3 > NOT TREATED, OK 
\ /--------------------------------->:: VALUE 
\/ NO RESP DISEASE 1-P[DZ)M 

However, much information must still go into the decision, 
specifically with regards to choosing valid probabilities of 
disease and the economic efficiency of response to treat­
ment. 

Characterize the Informaton Needed 
The decision is based on predictions of perfomance 

which are, themselves, founded upon past experience. 
Hence, we need to distill information from the data pre­
sented in the feedlots' records. For this example we will 
use data from a study of spring and summer respiratory 
mortality in 42 truckloads (6536 animals) for two Oklaho­
ma feedlots which grow out Holstein steers brought in 
from calf raising units in Southern California (8). The 
paper evaluated respiratory mortality by incoming weight, 
farm of origin, month, and feedlot for one year. It was 
shown that incoming weight graphically broke into two cat­
egories, animals which were less than 300 pounds and ani­
mals which were greater than 300 pounds. This 
categorization of weight is sufficient for our purposes of 
making a treatment decision. 

The table below is excerpted from the above refer­
ence. Note that the information is not anything out of the 
ordinary for normal feedlot records. It lists respiratory 
mortality in lots of 160 calves each by feedlot, by season, by 
farm of origin, and by weight category. This is the non­
mass medicated performance data we need for our deci­
sion. What we must do is convert it into factor-specific esti­
mates of respiratory mortality rates. 
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TABLE 3. DATA ON FEEDLOT, SEASON, INCOMING WEIGHT, AND 
ORIGIN FOR RESPIRATORY MORTALITY IN HOLSTEIN STEERS. 
42 cases total. Data excerpted from Sizelove, 1987. 

LOT MO WT ORIG MORT% LOT MO WT ORIG MORT% 

5 1 2 3.8 2 5 2 2 2.0 
5 2 2 o.o 2 5 2 2 2.0 
5 2 4 3.3 2 5 2 4 2.7 

LOT = Feedlot involved (1,2) 
HO = Arrival Month, May-Sept. (5,6,7,8,9) 
WT = Weight class (1=<300#, 2=>300#) 
ORIG Source farm (1,2,3,4) 
MORT%= Respiratory mortality of group 

Most spreadsheets and nearly all statistical software 
will perform multiple regressions on data such as Table 3. 
Multiple regressions allow us to estimate associations be­
tween an outcome variable (MORT%) and proposed fac­
tors (LOT, MO, WT, and ORIG). 

Sometimes one gets a reasonable fit of the equation to 
the data, defined as a high value for Adjusted R2 (the 
amount of variation in MORT% accounted for by changes 
in the other variables). If the fit is not good, one can trans­
form the variables by taking logarithms or powers and re­
running the regressions. It can be done by hand with 
spreadsheets, or some of the statistical software will do it 
automatically. Again, LOTUS 1-2-3R (9) was used for this 
paper. 

By trial and error the best fit for this data set was 
found to use LOT, MO, and WT, plus the natural log­
arithm of ORIG, regressed against the natural logarithm 
of MORT%. The resulting equation: 

lnMORT% = 1.86 + -0.23(LOT) + 0.0S(MO) + 
- 0.70(WT) + 0.48 (lnORIG) 

gives an adjusted R2 of0.755 -- a good fit and is also signifi­
cant (P < 0.0001 ). The regression gives us the ability to ac­
count for 75% of the variability in respiratory mortality for 
a group of animals coming into either feedlot at any combi­
nation of month, weight, and farm of origin supported by 
our data. This is the probability P[DOA] in the decision 
tree. 

Assigning the other probabilities is more problemati­
cal. One of the difficult numbers to capture is the amount 
of disease that will be decreased by use of mass medica­
tion. Unfortunately, it is one of the most important num­
bers. Ideally we would run a clinical trial to determine this 
value, however, clinical trials are long-term, expensive pro­
cedures. Few practitioners have the time, funding, and ca­
pabilities to run clinical trials. Hence, we will make 
estimates for this figure and then see how sensitive the de­
cision is to changes in this figure. 

For the ratio of chronic animals to deaths, we will use 
a 2:3 figure (7). Further, the work of Sizelove indicated 
that we will need to look at a "best-case" scenario ( animals 
shipped in May to the second of the two feedlots, weighing 

128 

in at over 300 pounds, and coming from the first of four 
source farms) and a "worst-case" scenario ( animals 
shipped in September to the first feedlot, weighing less 
than 300 pounds, and coming from the fourth source farm) 
to describe the ranges of respiratory outcome we are likely 
to face. 

Lastly, we need to be concerned about the effects the 
program will have on the pull-rate. Often pen riders as­
sume that after mass medication they need not be as con­
scientious in pulling ill animals, allowing the disease 
process to advance, and causing pulled animals to have a 
lower response to treatment. Training personnel to be 
more sensitive to the signs of respiratory disease can over­
come this problem. We will evaluate this potential compli­
cation of the program by rerunning the scenarios with new 
probabilities. 

Choose a Preferred Course of Action 
The first scenario to be evaluated is the "best-case" 

scenario indicated above. We assume no special yard per­
sonnel training took place, so the animals pulled have 
more severe respiratory disease. The disease severity will 
result in a treated case fatality rate 50% greater than that 
expected in the non-mass medicated scenario. The list of 
probabilities so calculated and a tally of actual numbers is 
given in Table 4. 

TABLE 4. PROBABILITIES OF RESPIRATORY DISEASE FOR TWO 
HASS MEDICATION STRATEGIES, BEST CASE SCENARIO WITHOUT 
TRAINING, Scenario is comprised of: Hay shipping of 
300 pound and greater calves from Farm number 1 to Yard 
number 2, No special personnel training. Tally assumes 
population size at start is 1,000 animals. Data from 
Sizelove and Jordan. 

Disease rate without mass med. 
Response to treatment, OK 
Response to treatment, Chronic 
Response to treatment, Death 

Disease rate ~!Jc!~ mass mt>d. 
Response to treatment, OK 
Response to treatment, Chronic 
Response to treatment, Death 

VALUE TALLY of 1000 

30.0% 
92.7% 

2.9% 
4. 4% 

15.0% 
89. 1% 

4.4% 
6.6% 

300 l LL 
278 RESPOND 

9 CHRONICS 
13 DEATHS 

150 ILL 
134 RESPOND 

7 CHRONICS 
10 DEATHS 

Ratio of Chronics to Deaths 2:3 
Disease reduction by mass medication 50.0% 

The "Response to treatment, Death" for the nor:i­
mass medicated strategy was calculated using the regres­
sion equation from the Sizelove data adjusted for pre­
dicted overall disease rate. "Response to treatment, 
Chronic" is calculated from the "Ratio of Chronics to 
Deaths" applied to the case fatality rate. "Response to 
treatment, OK" is deduced by subtracting the probabilities 
of getting a chronic animal and of having the animal die, 
from 1.0. 

The case fatality rate for the mass medication strategy 
was assumed to be 50% greater than the rate of the non­
mass medicated strategy, due to the disease detection 
problem if no training is employed, as described above. 
The "Response to treatment, ... " values were then calcu-
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lated as for the non-mass medicated strategy. When train­
ing is employed, "Response to treatment, ... " in the mass 
medicated animals will equal that of the non-mass medi­
cated group. 

The decision tree (below) for this specific scenario in­
dicates that the mass medication strategy is preferred over 
the non-mass medication strategy. However, the mass 
medication strategy's EMV ($289.45) is only 1 % greater 
than the EMV for the non-mass medicated strategy 
($287.01). Depending on decision tree results when the 
opposing strategies are this close can be dangerous. We 
know our estimates are likely not accurate to 1 %. Sensitivi­
ty analysis on the basic assumptions is a must in such cases. 

MASS MEDICATION DECISION TREE #2. Best case 
scenario (May, Yard 2, > 300#, Farm 1) without person­
nel training. Probability data from Table 4. 

EMV of 
decision: 

$287 . 01 

EMV of treatment 
node: $260.06 

TREATED, OK 
+------------------>: $284,96 

0.927 P[OK) 

I\ 
RESPIRATORY >/ \ TREATED, CHRONIC 
DISEASE +----->< C2 >------ ---------- >: (12.00) 

\ I 0.029 P[CH) 

P[DZ) 
0 . 300 

/\ 

\I 
I 
I 

: TREATED, DIE 
+----- ------- --- --- >: ($82.8 8 ) 

0.044 P[DOA) 

NO >/ \----+ 
MASS +-- >< Cl > NOT TREATED, OK 

MEDICATE \ /-------------------- ------------ >: $298.56 
CHOICE : \/ NO RESP DISEASE O. 700 1-P[ DZ l 

I 
I 

+-----+ : : :--+ EMV of treatment 
-: Dl : node: $247.80 

: : --+ 
+-----+ 

TREATED, OK 
+------------------>: $284.96 

0.891 P[OK)M 

MASS 
MEDI CAT E 

CHOICE 

( $1. 50) 

RESPIRATORY /\ 
DISEASE >/ \ TREATED, CHRONIC 

P[DZ]M 
0.150 

I\ 

+----->< C4 >-------------- -->: 
\ I 0.044 P[CH]M 
\I 

I TREATED, DIE 
+------------------>: 

0.066 P[DOA)H 

I \----+ 
+-->< C3 > NOT TREATED, OK 

($12.00) 

($82.88) 

----- \ /--------------------------------- >: $298.56 
EMV of '=->\/ NO RESP DISEASE 0.850 1-P[DZ)M 

decision: 
$289.45 

Sensitivity analysis was performed on the expected 
probability of disease in non-mass medicated animals, and 
on the reduction in disease from mass medication. This is 
performed by systematically altering each variable's value 
and solving the decision tree for each new combination. 
Needless to say, this is tedious and time consuming if done 

by hand. With an electronic spreadsheet, however, the feat 
is easily accomplished. The results are shown in Figure 1. 
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Figure 1. Effect of expected disease rate and 
mass medication (MM) efficacy, SCENARIO 
la. Numbers indicate disease rate in MM ani­
mals compared to non-MM animals (1 =same 
disease rate, .8 = disease rate in MM = 80% of 
non-MM), Rx-= values for non-MM. 
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The sensitivity analysis on this "best case scenario 
without training" suggests that with a 40% reduction in 
disease incidence a mass medication strategy will break 
even when respiratory disease is expected to reach 15% if 
no mass medication is employed. If mass medication re­
duces disease by 60%, or more, it will pay even if the ex­
pected non-mass medication disease rate is only 5%. The 
EMV differences observed, however, are less than 3% in 
most cases, so the decision is still not clear cut. 

If a disease detection training program is added to the 

Figure 2. Effect of expected disease rate and 
mass medication (MM) efficiency, SCENARIO 
lb. See Figure 1 for legend. 
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"best case scenario" the picture changes. No longer does 
the mass medication strategy suffer from inadequate case 
detection and a resultant lowered treatment response. 
This affects overall program efficacy, as show in Figure 2. 

Improving disease detection greatly improves pro­
gram efficacy. A mass medication protocol, with training, 
need only reduce disease incidence by 20% to break even 
at an expected disease rate of 5% to 10% in non-mass 
medicated animals. The decision tree not only gives us gen­
eral recommendations, it predicts the difference in eco­
nomic potential for an innumerable variety of scenarios. If 
we expect the disease rate without mass medication to be 
40 out of 100, and the mass medication program will de­
crease this by 40% (i.e., to 24 of 100), then we expect to 
net $3.70 ($289.30-$285.60) more, per head, by applying 
the mass medication program. 

Another way to use the results in making a decision to 
mass medicate is to estimate the most likely disease preva­
lence without mass medication. Should that value be more 
than 10%, and should the mass medication program be ca­
pable of lowering clinical cases by one in five, then mass 
medication will, on average, more than pay for itself. Now 
the practitioner has objective values with which to make a 
decision regarding a specific situation. 

Note that this does not imply mass medication will al­
ways pay under the above circumstances. It suggests that 
mass medication will give preferable results if applied sev­
eral times. That is, on average, applying a mass medication 
program that includes personnel training, will more than 
pay for itself. 

What would happen if the "best case" did not occur? 
By Sizelove's data, the scenario with the greatest expected 
respiratory mortality was shipping light calves in Septem­
ber from Farm #4 to Yard # 1. Calculation of the probabi­
lities as done above for the best case scenario follows: 

The ratio of chronic animals to dead animals is kept 
the same as previous. Similarly, the case fatality rate in 
mass medicated animals is 50% higher than the non-mass 
medicated animals. This results in the overall mortality for 
the non-mass medicated group to be 8.2%, compared to 

TABLE 5. PROBABILITIES OF RESPIRATORY DISEASE FOR TWO 
MASS MEDICATION STRATEGIES, WORST CASE SCENARIO WITHOUT 
TRAINING. Scenario: Sept. shipping of <300 # calves 
from Farm 4 t o Yard 1, No special personnel train i ng. 
Tally assumes starting herd size of 1,000. Data from 
Sizelove and Jordan. 

Disease rate without mass med . 
Re s ponse to treatment, OK 
Response to treatment, Chronic 
Response to treatment, Death 

Di sease rate wit_h mass med . 
Response to treatment, OK 
Response to treatment, Chronic 
Res p onse to treatment, Death 

VALUE TALLY of 1000 

30 . 0% 
54 . 7% 
18. 1% 
27.2% 

15.0% 
32.4% 
27. 1% 
40.6% 

300 ILL 
164 RESPOND 

54 CHRONICS 
82 DEATHS 

150 ILL 
49 RESPOND 
41 CHRONICS 
61 DEATHS 

Ratio of Chronics to Deaths 2 : 3 
Disease reduction by mass medication 50.0% 
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1.32% for the best case scenario. 
Using the costs and prices developed in Table 2, and 

the probabilities derived from Table 5, the decision tree 
for the worst case scenario, without training can be solved. 
Since it is of greater practical interest to examine the sensi­
tivity analysis, we will go straight to that without re-draw­
ing the decision tree, though the reader is encouraged to 
do so. 

w 
3 
<( 

> ,.. 
[[ 
<( 
1--
w 
z 
g 
D 

~ 
g, 
ill 

Figure 3. Effect of expected disease rate and 
mass medication (MM) efficiency, SCENARIO 
2a. See Figure 1 for legend. 

EFFE CT OF % RESP . D ISEAS E ON CHO ICE 
W0r"Gt C,ise 5,:,3nar 10, t lo Trel n lrYJ 

S 300 -cr------- --- - ---------, 

$29 0 

S280 

$270 

$ 26 0 

S2S0 

S24 0 

S2 30 

S220 

0 '6 1 0!16 15'6 20'6 25!11 30'6 3 5i!i 4 0i!i 4 5i!i 50111 

I\; f1ESP. DISEASE I N t.O t.'ASS MEO AIJI MALS 

0 1 . 8 ◊ 6 . ◄ X . 2 V Ax-

Note that the worst case scenario yields expected 
monetary values much lower than does the best case sce­
nario depicted in Figure 1. Despite this, the break-even 
point for mass medication efficacy is similar to the best 
case scenario. 

It appears, then, that expected mortality rate does not 
play a major role in making the decision, as break-even 
occurs at close to the same value for each. This is useful 
information, for estimating mortality is one of the analyses' 
"soft" numbers; a value about which we could not be cer­
tain. 

Instead, the relative performance of the mass medica­
tion program versus no program, a number we can reliably 
test for after trying the program on a few lots, is the decid­
ing factor. This is confirmed by viewing the outcomes for 
the worst case scenario when a disease detection training 
program is employed: 

As with the best case scenario, when training is em­
ployed, a mass medication program need only reduce di­
sease incidence by a few percentage points to break-even; 
only the line where mass medication has no effect on di­
sease rate is consistently below the non mass medication 
line. Any disease reduction greater than a few percent is 
profit, the whole point of the exercise. 

A full analysis of the mass medication problem would 
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Figure 4. Effect of expected disease rate and 
mass medication (MM) efficiency, SCENARIO 
2b. See Figure 1 for legend. 
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next approach a number of questions. What if the ratio of 
chronic to dead animals varied? How sensitive is the out­
come to the fixed relationship between case fatality rates 
in the no training scenarios? What if mass medication costs 
were higher than modeled? How much could we afford to 
bring up efficacy in the no training situations.? How do 
prices affect the outcomes? What kind of a premium could 
we afford to offer for the lower risk, heavy weight calves? 
Conversely, at what price do lightweight calves, in spite of 
their higher risks and lower EMV's, become cost-effective 
against heavier calves? Are there other market or biologi­
cal factors that should be included? 

The questions and scenario-specific examples could 
go on almost indefinitely. The potential for exploring the 
intricate relationships and dependencies within a complex 
system such as this one is immense, limited only by the 
user's interests, and the quality of the supporting database. 

Conclusion 

Medicine has often been described as part "art" and 
part "science". The science aspect has always been easy to 
define: It is the whole made up of anatomy, pharmacology, 
surgery, etc., etc. But the art side of medicine is difficult to 
explain, for it is not clear how to partition the whole into its 
parts, or even to describe what we mean by the word "art". 

Most of us would agree that it is most clearly demon­
strated by those clinicians who "just seem to know" the 
best treatment, the best questions, the best methods, for 
solving problems. Such practitioners seem to use a sixth 
sense to ferret out what is important from what is not. 
Often, if asked how a decision was made, they will not be 
able to tell. We call it "art" because some people seem 
able to do much of this almost intuitively, and because we 
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haven't attempted to formalize the processes. Having 
never attempted to describe the process, in a sense, we as­
sumed it could not be described. 

Experience seems essential in order to be a true 
"medical artist". We assume life experiences can be or­
ganized into a library of signs, symptoms, actions, and reac­
tions. When faced with a problem the person searches 
through the library to find a past situation that is similar. 
When it is found, the degree of similarity is assessed and 
the practitioner then uses the information to create a pro­
tocol aimed at solving the difficulty. The "art" of practice, 
then, really involves ordering the characteristics of a prob­
lem, collating the information available to clarify percep­
tions of future environments and decision alternatives, 
creating consistency in the approach by ranking outcomes 
by some value system, and balancing these facets into a 
system for making choices. 

Qualitatively, what we call the "art" of medicine is de­
cision analysis. The mental library referred to above pro­
vides relative rankings of likelihoods ( or probabilities) of 
the situation at hand being a manifestation of one disease 
over another. The inferences are then used to rank out­
comes and pick what appears to be the best solution out of 
many options. 

Unfortunately, experience is only the term we use to 
refer to our past mistakes. Many of us cannot afford to 
commit that many mistakes and still hope to be able to 
practice. Plus, experience is of no value, and can even be 
an impediment, when faced with a completely new situa­
tion. If you doubt that, just think about the time it takes an 
adult versus a 10 year old to learn to program a video cas­
sette machine. 

Decision analysis is a powerful tool for those of us not 
lucky enough to be artists in the practice of medicine. It 
can also be the foundation for solving very difficult and 
complex problems, those problems where intuition,and 
hence the "artists', tend to fail. Like any tool used in prac­
tice, decision analysis can be misused -- such as by putting 
too much faith in any particular assumption or in the data 
used to build a tree -- but methodical implementation and 
analysis can largely protect from that drawback. 

As our clients become more sophisticated, and as our 
animal agriculture operations and markets become more 
intensively managed, we will face more of these complex 
situations daily. We call them "production diseases". An­
other tool to help us make sense out of the changes the 
world presents us with is most welcome. 
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Abstracts 

A survey of caesarean operations on 
cattle in general veterinary practice 

J. H. Cattell, H. Dobson 

Veterinary Record (1990) 127, 395-399 
The animal most frequently requiring operation for dystocia in this 

survey of 133 cases was the Friesian/Holstein heifer. In 38 per cent of 
cases the reason for surgery was an oversized calf and in 84 per cent the 
operation was performed on the farm of origin. The majority of the dams 
were operated on while standing, using a left flank incision, and under 
paravertebral or field infiltration with local anaesthetic solution. Exterio­
risation of the uterus did not appear to be essential except when the calf 
was dead. Ninety-five per cent of the calves alive in utero and 91 per cent 
of the dams survived, although 30 per cent of the dams suffered ill-health 
afterwards. In nine cases neither dam nor calf survived. The fertility in­
dices of those which were rebred were not markedly affected, but milk 
production was reduced by an estimated 12 per cent of the potential yield. 

Bovine endometritis: Comparative effica­
cy of alfaprostol and intrauterine thera­
pies, and other factors influencing clinical 
success 

R. D. Murray, J. D. Allison, R. P. Gard 

Veterinary Record (1990) 127, 86-90 
A comparative study of the treatment of 306 severe, moderate, or 

mild cases of bovine endometritis was carried out over two calving sea­
sons. The cases were treated with alfaprostol, or an intrauterine antibac­
terial preparation, or with a combination of both therapies. There was no 
significant difference between the efficacies of these treatments, and a 
single injection of alfaprostol was effective in 74 per cent of the cases 
treated. The effectiveness of the treatments was related to the degree of 
self-cure of the endometritis after parturition, the luteral activity at the 
time of treatment, and farm management factors affecting the health and 
condition of the calving cows. 
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love, W. 1987. Risk factors associated with respiratory mortality in 
holstein steer calves of southern California origin fed in two high plains 
feedyards. Master's of Preventive Veterinary Medicine thesis. School of 
Veterinary Medicine, University of California Davis. 9. LOTUS 1-2-3R, 
Release 2. 1985. Lotus Development Corporation. Cambridge, MA. 

Clinical efficacy of chlortetracycline 
hydrochloride administered in milk 
replacer to calves 

J. C. Braidwood, N. W. Henry 

Veterinary Record (1990) 127, 197-301 
Two similar groups of 14 calves were housed and fed identically in 

individual pens on a calf-rearing farm. The groups were balanced for 
weight and immunological status as determined by zinc sulphate turbidity 
values. When an outbreak of enteric and respiratory disease occurred one 
group was treated with 20 mg chlortetracycline hydrochloride/kg body­
weight daily for seven consecutive days, by adding the active ingredient to 
the milk replacer, while the other group was left untreated. Both groups 
received additional therapy as required. The calves were examined daily 
during the period of treatment and the clinical observations were assessed 
and analysed statistically. There was a significant difference between the 
clinical scores of the two groups on the second day of treatment (P 0-5) 
and on all subsequent days (P 0-01) indicating that the calves receiving 
chlortetracycline hydrochloride were less affected by the disease out­
break. The abnormal enteric and respiratory signs were associated with 
several potential pathogens including bacteria, viruses and protozoa. The 
treatment was therefore effective against enteric and respiratory disease 
involving several organisms. 

Sympathico-adrenal effects of 
endotoxaemia in cattle 

R. Boosman, C. W. A. A. M. Mutsaers, S. J. Dieleman 

Veterinary Record(1990) 172, 11-14 
Intradermal injection of 46 ug E coil endotoxin had no effect on the 

plasma cortisol and noradrenaline concentrations of four dairy cows. 
Mean values were similar to normal values reported in the literature. In­
travenous injection of 75 ug of endotoxin on the following day caused a 
massive increase in plasma cortisol concentrations which lasted for seven 
hours. Plasma noradrenaline concentrations increased rapidly after the 
intravenous administration of endotoxin and remained high for at least 
one hour. A possible relationship between endotoxaemia and the patho­
genesis of acute laminitis is discussed. 
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