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the calf to a feedlot. Feedlots specialize in feeding cattle to 
specific end points (feeder cattle or slaughter cattle). In ad-
dition, feedlots may have options for maintaining ownership, 
financing feed and yardage, and other solutions that may 
present opportunities to the dairy.

Performance Enhancing Technologies

Unless you are considering entering a growth promo-
tant-free program, there is always an opportunity to use 
implants. Implants will help improve F:G, but it’s crucial to 
match the implant to the growth stage and diets. The implant 
strategy must be customized to the operation. Cattle handling 
facilities, time, and labor might apply constraints to the adop-
tion of an implant program so it’s important to proactively 
investigate this. The opportunity may exist to leverage your 
implant supplier to gain product knowledge, personnel train-
ing, and timing expertise. In addition, you will need to engage 
a nutritionist to align the feeding protocol with the implant 
strategy and goals.

Conclusion

An overarching approach is to leverage the similarities 
and recognize the differences. Consulting veterinarians can 
leverage the basic husbandry, health, and feeding protocols 
developed for raising dairy heifers and then customize them 
to incorporate the different endpoints and specifications of 
dairy-beef. Implement production lots and track NFCOG, 
FCOG, and TCOG to control costs of production and hit KPIs. 

Engaging a nutritionist will ensure goals are met and feed and 
implant strategies are aligned. Utilizing available technologies 
allows optimization of COP and F:G. 

Sustainable dairy-beef production requires repeat 
customers to purchase the product. As a result, it is neces-
sary to understand the target market and meet the buyer’s 
specifications. 
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Introduction

Production efficiency in the dairy and beef industry can 
be defined as minimizing the amount of inputs (e.g., feed, fos-
sil fuels) and outputs (e.g., ammonia, NH3; greenhouse gases, 
GHG) to produce a given quantity of milk or meat. The present 
paper will focus on the dairy example. Production efficiency 
improvements can come from minimizing waste, maximizing 
a dairy cow’s milk production, and maximizing the proportion 
of her life spent in peak milk production without sacrificing 
animal health and well-being. To a degree, when milk pro-
duction per cow is improved, the life-cycle emissions of dairy 
production decrease per unit of milk (i.e., per lb or kg of 3.5% 
FCM).59 This is achieved through a dilution of maintenance 
costs per pound of FCM at the level of both the individual cow 
and the entire US dairy production system. Cows that produce 
more milk reduce the proportion of total consumed feedstuffs 
going toward maintenance energy costs.4,40,58 Secondarily, 
more milk per cow can decrease the total lactating herd size 
needed to produce a given quantity of milk.10,11 Past improve-
ments demonstrate the ability of production efficiency to 
decrease the environmental impact per unit of milk. Capper 
et al10 found that historical advances in genetics, nutrition, 
and management of dairy farms allowed dairy production in 
2007 to emit 43% of the CH4 and 56% of the N2O that were 
emitted in 1944 to produce 2.2 billion (1 billion kg) of milk. 
As the following sections demonstrate, more opportunities 
for improving a dairy’s production efficiency exist that could 
lead to further reductions in emissions per pound of FCM. 

Heifer Management

Replacement heifers are an important part of the life-
cycle emissions of a pound of FCM. Before calving, heifers are 
consuming inputs and producing both GHG and air pollutants 
without contributing to the production of milk. In the milk-fed 
stage of a heifer’s life, she can efficiently convert consumed 
energy and protein into lean body tissue without depending 
on emission-producing rumen microbes. 

Recent research has found that increasing and altering 
the nutrients supplied to milk-fed calves can improve growth 
rates and feed efficiency.3,8,28 “Intensified” feeding programs 
for dairy heifers have been shown to lower age at first calv-
ing,48 with no reduction57 or even an improvement in first-
lactation milk yield.18 Both decreasing the current national 

average age at first calving of 25.2 months56 and increasing 
first-lactation milk yield could improve milk’s life-cycle pro-
duction efficiency and decrease emissions per pound of FCM. 

Colostrum administration is another aspect of heifer 
management that can affect GHG and air quality emissions 
per pound of FCM. Dairy calves depend on passive immuniza-
tion from the absorption of antibodies in colostrum to provide 
adequate immunity during their early life stages. 49 Failure 
of passive transfer of immunity leads to increased mortal-
ity and morbidity and decreased growth performance.5,49 
Administering the proper quantity of high quality colostrum 
within the first few hours of life has been shown to improve 
long-term animal health and first-lactation performance.16,20  
Beam et al5 estimated that failure of passive transfer occurs in 
19.2% of US dairy heifer calves; therefore, decreasing this in-
cidence could substantially decrease death and performance 
losses and lessen emissions per pound of FCM. 

Herd Health

Herd-health challenges affect per-unit of-milk emis-
sions by increasing mortality and losses of saleable milk and 
decreasing reproductive performance and milk production 
efficiency. Herd health is influenced by many factors, includ-
ing management, nutrition, the environment, and social 
stressors. 

Over the past 25 yr, the dairy industry has steadily 
shifted its structure toward fewer farms with larger herds 
and fewer workers per cow. In 2008, a total of 3,350 US dairy 
farms with 500 or more cows (approximately 5% of total 
dairy operations) produced 58.5% of the nation’s milk with 
54.9% of the nation’s dairy cows.41 Along with the industry’s 
consolidation, milk production per cow has doubled over the 
past 25 yr, although it appears that disease incidence has 
remained stable.37 However, the productive life of Holsteins 
in the US born in 2000 decreased by 3.95 months compared 
with Holstein cows born in 1980.15 Thus, opportunities ex-
ist for the dairy industry to advance production efficiency 
by improving herd health to simultaneously enhance milk 
production, reproductive performance, and cow longevity.

When dairy cattle transition from a pregnant, non-
lactating state to a lactating state, they face a tremendous 
change in their metabolic requirements (e.g., Ca requirements 
are estimated to increase 4-fold on the day of parturition).46 
Consequently, most health concerns arise during the transi-
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tion period. Approximately 75% of disease occurs within 
the first month after calving,37 and a study of Pennsylvania 
dairy herds found that 26.2% of dairy culls occur from 21 
d before to 60 d after calving.15 Recent research has linked 
disease incidence and excessive negative energy balances 
during the transition period with significant decreases in milk 
yield and reproductive success during the subsequent lacta-
tion.17 Further research into the biology and management of 
transition cows and the extension of this critical knowledge 
to commercial herds can enhance the life-cycle efficiency of 
the US dairy production system.

Environmental or social stressors can decrease the 
production efficiency of the cow and subsequently increase 
the emissions of each pound of milk that she produces. Heat 
stress has been estimated to cost the dairy industry nearly $1 
billion per year in decreased milk production, reproductive 
performance, and increased death losses.52 With regard to 
social stress, grouping animals according to size and age and 
minimizing overcrowding can improve DMI, consequentially 
improving milk production.24 Improving cow cooling dur-
ing hot summer months and grouping animals to minimize 
behavioral stress has been the focus of research to improve 
farm profitability, but these improvements have the potential 
to decrease emissions per pound of FCM as well. 

Mastitis is a herd-health challenge that can affect 
emissions per pound of FCM by decreasing milk production 
performance and increasing losses of saleable milk. Hospido 
and Sonesson30 analyzed the environmental impact of masti-
tis using an LCA of dairy herds in Galicia, Spain. The authors 
found that decreasing the clinical mastitis rate from 25 to 
18% and the subclinical mastitis rate from 33 to 15% reduced 
the GWP of a unit of milk by 2.5%30 because of increased 
input-use efficiency, decreased losses of milk production, 
and a decreased amount of waste milk. 

Lameness is a critical herd-health concern that seems 
to have worsened over the past 25 yr.37 Lameness or injury 
is responsible for approximately 20% of mortalities and 
16% of selective culls in mature US dairy cows.56 In addi-
tion to decreased survivability, lameness causes decreased 
milk production61 and poorer reproductive performance in 
affected cows.21 Improved facilities, management, nutrition, 
and genetics all have the potential to decrease the incidence 
of lameness2 and decrease emissions per pound of FCM. 

Nutrition and Feed Production

The nutrition of dairy cattle greatly determines the 
emissions produced directly by the ruminant animal and 
its waste. Diet composition can alter rumen fermentation 
to reduce the amount of CH4 produced19 and, as previously 
discussed, the NH3 emissions produced from the manure.33,59 
The substrates used by methanogens are byproducts of 
structural carbohydrate fermentation; thus, high-concentrate 
diets containing more nonstructural carbohydrates can lead 
to decreased CH4 emissions.19,36 However, diets very high 

in concentrate (such as those fed to the majority of US beef 
feedlot cattle) can decrease rumen pH and lead to rumen 
acidosis.47 Furthermore, very high-concentrate diets dimin-
ish the principal environmental benefit of dairy cows: their 
ability to convert cellulose, indigestible to humans and the 
Earth’s most abundant organic molecule, into high-quality 
proteins for human consumption.45 

Therefore, the CH4 produced by dairy cattle cannot 
simply be seen as a gross energy loss and GHG source but is 
a necessary consequence of transforming inedible fibrous 
forages and byproducts (e.g., almond hulls, citrus pulp, 
distillers grains) into food and fiber products fit for human 
use. Nonetheless, substantial reductions in CH4 emissions 
can be achieved without feeding high levels of concentrates 
by altering the previously mentioned nutritional factors: 
microbial-altering feed additives, dietary lipids, and forage 
processing and quality.34 

Feed additives, such as the ionophore monensin, can 
change microbial processes in the rumen to potentially im-
prove feed efficiency and reduce CH4 emissions.54 However, 
research with monensin has shown conflicting results,25,26,29,44 
which suggests a need for more indepth research on its ef-
fect on rumen microbial populations and the metabolism 
of dairy cows. Alternatives to ionophores such as probiot-
ics (e.g., yeast), essential oils, and biologically active plant 
compounds (e.g., condensed tannins) have shown promise 
for CH4 reductions; however, most research to date has been 
conducted in vitro and more in vivo studies are needed to 
evaluate the effect of these alternatives on CH4 and their 
commercial viability.6,9 

Dietary lipids, specifically unsaturated fatty acids, 
have the potential to act as an alternate H sink in the rumen, 
thereby reducing the H available to methanogens and the 
CH4 produced.19 Additionally, CH4 reductions from feeding 
dietary lipids can be attributed to their suppression of fiber-
digesting bacteria and toxicity to protozoa closely associated 
with methanogens.31 Johnson et al35 tested the ability of canola 
and whole cottonseed to reduce CH4 and found no difference 
in emissions when compared with a control diet, whereas 
other researchers have found crushed canola seed to have 
a CH4-suppressing effect.7 The inconsistency of the effect of 
dietary lipids on CH4 is due, in part, to the variation in diets, 
the fatty acid profile, amount and form of the lipid source, and 
the length of the feeding trial, because the rumen ecosystem 
may adapt to lipid supplementation.7,39 Although lipids do have 
the potential to reduce CH4 emissions, consideration must be 
given to their adverse side effects of reducing DMI or decreas-
ing milk fat when fed at levels over a critical threshold.23,39 

Furthermore, the source and availability of lipids must 
be considered, because price will dictate their commercial 
adoption, and long-distance transport of lipid sources may 
defeat their emission-reducing potential by increasing fossil 
fuel combustion. 

Forage quality and management can affect both air 
quality and GHG emissions per pound of FCM. Fermented 

SEPTEMBER 2019 — VOL. 52 — NO. 2 — AABP PROCEEDINGS 179

feeds are a major source of VOC1 and require substantial fossil 
fuel inputs during their production;13,51 therefore, minimiz-
ing dry matter loss throughout the production, storage, and 
feeding of these feedstuffs will decrease the air quality and 
climate change impact of each pound of feed. Higher quality 
forages, produced by ideal crop production, harvesting, and 
preservation practices, maximize DMI and milk production.43 
Additionally, forages with higher digestibility and higher rates 
of passage out of the rumen have the potential to reduce en-
teric CH4 emissions for each unit of feed consumed.34 

So-called precision feeding that closely matches the 
nutrients needed by the dairy cow for maintenance, growth, 
lactation, and gestation to the supplied dietary nutrients can 
minimize the environmental impact of the cow’s excreta.55 
Precision feeding requires nutritional models with suffi-
cient accuracy and a level of management that can reduce 
the feeding system’s variation.60 By constantly monitoring 
the dry matter and nutrient composition of feedstuffs, dairy 
producers can avoid expensive overfeeding and minimize 
nutrient excretion that can lead to emissions. 

The potential reduction in NH3 emissions by more 
tightly managing the CP content of the diet to match the 
animal’s needs is substantial, because most of the N fed over 
requirements is excreted as urinary urea-N. Castillo et al12 
found that cows with intakes of 419 g of N/d had similar milk 
production as cows consuming 516 g of N/d; however, 74% of 
the extra 94 g of N/d was excreted as urinary urea-N, which 
could be lost to the environment as NH3 emissions. Moreover, 
a precision feeding strategy decreases the amount of refus-
als, which may become waste on a dairy or be fed to other 
production groups (e.g., lactating cow refusals fed to heifers) 
that have dissimilar nutrient needs, thereby increasing the 
likelihood for higher nutrient excretion.53 Additionally, closely 
monitoring and ensuring the correct nutrition of individual 
groups of animals can minimize the risk of other nutritionally 
influenced diseases and conditions, such as ketosis, lame-
ness, and prolonged anestrous.38 Overall, managing feed and 
feeding programs to minimize waste while maximizing milk 
production can improve farm profitability and decrease the 
life-cycle emissions per pound of FCM. 

Reproduction

Perhaps not as apparent as nutrition, reproductive per-
formance greatly affects emissions per pound of FCM. Dairy 
cows that have extended calving intervals because of con-
ception failure spend more time out of peak milk when feed 
conversion into milk is most efficient. The total productive 
lifetime of many dairy cows is determined by reproductive 
performance, because reproductive problems are responsible 
for 26.3% of the selective culls in the United States.56 Over 
the past 30 yr, the reproductive performance and productive 
lifetime of dairy cattle have substantially decreased while 
milk production has increased.15,38 The negative effect per 
pound of FCM emissions caused by declining reproductive 

efficiency has likely been offset by increases in milk produc-
tion per cow. However, restoring reproductive performance in 
combination with increased milk yield would further reduce 
emissions per pound of FCM. 

Garnsworthy22 modeled the environmental impact of 
reproductive performance and milk production in the United 
Kingdom. The model found that both higher milk yield and 
improved reproductive performance (better estrus detection 
and conception rates) contributed to reduced CH4 and NH3 
emissions because of the smaller lactating and replacement 
herd population required to meet UK production quotas.22 

The cause of the decline in reproductive efficiency of 
dairy cattle is multifaceted and is not completely understood 
currently,32 because reproductive success is influenced 
by nutrition, genetics, health disorders during transition, 
management, and the environment.38 The level of repro-
ductive success across all US herds is variable by region, 
breed, and management,42 suggesting that improvements 
are achievable. 

Encouragingly, recent data show that the long-term 
trend of decreasing reproductive performance and surviv-
ability may be slowing or reversing.27,42 Extensive research 
in dairy cattle reproduction is needed to identify the fac-
tors impeding fertility and to further develop strategies to 
improve reproduction on commercial herds. Wide adoption 
of these successful reproductive strategies could potentially 
lengthen the productive life of the US dairy cow and lower 
emissions per pound of FCM. 

Sexed semen is a reproductive technology that has 
the potential to both help and hurt the impact of the dairy 
industry on air quality and climate change per pound of 
FCM. If used selectively, sexed semen can increase the rate 
of genetic gain in dairy cattle, allowing advantageous traits 
to become ubiquitous in the entire dairy cattle population.14 
Furthermore, on average, heifer calves are smaller than bull 
calves and cause fewer dystocias, which may allow for earlier 
breeding of heifers, and fewer mortalities and health prob-
lems.62 However, if all animals are bred with sexed semen (or 
even all heifers), the replacement population for the US dairy 
herd will increase in size. 

To keep the total population of dairy cattle at a level that 
does not create an oversupply of milk, the lactating cow cull 
rate must increase. Again, this can be advantageous, because 
poor performing animals and those with poor genetic merit 
would likely be culled, but in the context of environmental 
impact per pound of FCM, the widespread use of sexed semen 
could increase emissions per pound of FCM by shortening the 
total productive lifetime of dairy cows. Furthermore, a larger 
replacement herd size means more nonproductive emissions 
for each pound of FCM produced. 

Conclusions

Overall, this paper shows that some of the most im-
portant gains that can be achieved in mitigation of dairy 
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tion period. Approximately 75% of disease occurs within 
the first month after calving,37 and a study of Pennsylvania 
dairy herds found that 26.2% of dairy culls occur from 21 
d before to 60 d after calving.15 Recent research has linked 
disease incidence and excessive negative energy balances 
during the transition period with significant decreases in milk 
yield and reproductive success during the subsequent lacta-
tion.17 Further research into the biology and management of 
transition cows and the extension of this critical knowledge 
to commercial herds can enhance the life-cycle efficiency of 
the US dairy production system.

Environmental or social stressors can decrease the 
production efficiency of the cow and subsequently increase 
the emissions of each pound of milk that she produces. Heat 
stress has been estimated to cost the dairy industry nearly $1 
billion per year in decreased milk production, reproductive 
performance, and increased death losses.52 With regard to 
social stress, grouping animals according to size and age and 
minimizing overcrowding can improve DMI, consequentially 
improving milk production.24 Improving cow cooling dur-
ing hot summer months and grouping animals to minimize 
behavioral stress has been the focus of research to improve 
farm profitability, but these improvements have the potential 
to decrease emissions per pound of FCM as well. 

Mastitis is a herd-health challenge that can affect 
emissions per pound of FCM by decreasing milk production 
performance and increasing losses of saleable milk. Hospido 
and Sonesson30 analyzed the environmental impact of masti-
tis using an LCA of dairy herds in Galicia, Spain. The authors 
found that decreasing the clinical mastitis rate from 25 to 
18% and the subclinical mastitis rate from 33 to 15% reduced 
the GWP of a unit of milk by 2.5%30 because of increased 
input-use efficiency, decreased losses of milk production, 
and a decreased amount of waste milk. 

Lameness is a critical herd-health concern that seems 
to have worsened over the past 25 yr.37 Lameness or injury 
is responsible for approximately 20% of mortalities and 
16% of selective culls in mature US dairy cows.56 In addi-
tion to decreased survivability, lameness causes decreased 
milk production61 and poorer reproductive performance in 
affected cows.21 Improved facilities, management, nutrition, 
and genetics all have the potential to decrease the incidence 
of lameness2 and decrease emissions per pound of FCM. 

Nutrition and Feed Production

The nutrition of dairy cattle greatly determines the 
emissions produced directly by the ruminant animal and 
its waste. Diet composition can alter rumen fermentation 
to reduce the amount of CH4 produced19 and, as previously 
discussed, the NH3 emissions produced from the manure.33,59 
The substrates used by methanogens are byproducts of 
structural carbohydrate fermentation; thus, high-concentrate 
diets containing more nonstructural carbohydrates can lead 
to decreased CH4 emissions.19,36 However, diets very high 

in concentrate (such as those fed to the majority of US beef 
feedlot cattle) can decrease rumen pH and lead to rumen 
acidosis.47 Furthermore, very high-concentrate diets dimin-
ish the principal environmental benefit of dairy cows: their 
ability to convert cellulose, indigestible to humans and the 
Earth’s most abundant organic molecule, into high-quality 
proteins for human consumption.45 

Therefore, the CH4 produced by dairy cattle cannot 
simply be seen as a gross energy loss and GHG source but is 
a necessary consequence of transforming inedible fibrous 
forages and byproducts (e.g., almond hulls, citrus pulp, 
distillers grains) into food and fiber products fit for human 
use. Nonetheless, substantial reductions in CH4 emissions 
can be achieved without feeding high levels of concentrates 
by altering the previously mentioned nutritional factors: 
microbial-altering feed additives, dietary lipids, and forage 
processing and quality.34 

Feed additives, such as the ionophore monensin, can 
change microbial processes in the rumen to potentially im-
prove feed efficiency and reduce CH4 emissions.54 However, 
research with monensin has shown conflicting results,25,26,29,44 
which suggests a need for more indepth research on its ef-
fect on rumen microbial populations and the metabolism 
of dairy cows. Alternatives to ionophores such as probiot-
ics (e.g., yeast), essential oils, and biologically active plant 
compounds (e.g., condensed tannins) have shown promise 
for CH4 reductions; however, most research to date has been 
conducted in vitro and more in vivo studies are needed to 
evaluate the effect of these alternatives on CH4 and their 
commercial viability.6,9 

Dietary lipids, specifically unsaturated fatty acids, 
have the potential to act as an alternate H sink in the rumen, 
thereby reducing the H available to methanogens and the 
CH4 produced.19 Additionally, CH4 reductions from feeding 
dietary lipids can be attributed to their suppression of fiber-
digesting bacteria and toxicity to protozoa closely associated 
with methanogens.31 Johnson et al35 tested the ability of canola 
and whole cottonseed to reduce CH4 and found no difference 
in emissions when compared with a control diet, whereas 
other researchers have found crushed canola seed to have 
a CH4-suppressing effect.7 The inconsistency of the effect of 
dietary lipids on CH4 is due, in part, to the variation in diets, 
the fatty acid profile, amount and form of the lipid source, and 
the length of the feeding trial, because the rumen ecosystem 
may adapt to lipid supplementation.7,39 Although lipids do have 
the potential to reduce CH4 emissions, consideration must be 
given to their adverse side effects of reducing DMI or decreas-
ing milk fat when fed at levels over a critical threshold.23,39 

Furthermore, the source and availability of lipids must 
be considered, because price will dictate their commercial 
adoption, and long-distance transport of lipid sources may 
defeat their emission-reducing potential by increasing fossil 
fuel combustion. 

Forage quality and management can affect both air 
quality and GHG emissions per pound of FCM. Fermented 
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feeds are a major source of VOC1 and require substantial fossil 
fuel inputs during their production;13,51 therefore, minimiz-
ing dry matter loss throughout the production, storage, and 
feeding of these feedstuffs will decrease the air quality and 
climate change impact of each pound of feed. Higher quality 
forages, produced by ideal crop production, harvesting, and 
preservation practices, maximize DMI and milk production.43 
Additionally, forages with higher digestibility and higher rates 
of passage out of the rumen have the potential to reduce en-
teric CH4 emissions for each unit of feed consumed.34 

So-called precision feeding that closely matches the 
nutrients needed by the dairy cow for maintenance, growth, 
lactation, and gestation to the supplied dietary nutrients can 
minimize the environmental impact of the cow’s excreta.55 
Precision feeding requires nutritional models with suffi-
cient accuracy and a level of management that can reduce 
the feeding system’s variation.60 By constantly monitoring 
the dry matter and nutrient composition of feedstuffs, dairy 
producers can avoid expensive overfeeding and minimize 
nutrient excretion that can lead to emissions. 

The potential reduction in NH3 emissions by more 
tightly managing the CP content of the diet to match the 
animal’s needs is substantial, because most of the N fed over 
requirements is excreted as urinary urea-N. Castillo et al12 
found that cows with intakes of 419 g of N/d had similar milk 
production as cows consuming 516 g of N/d; however, 74% of 
the extra 94 g of N/d was excreted as urinary urea-N, which 
could be lost to the environment as NH3 emissions. Moreover, 
a precision feeding strategy decreases the amount of refus-
als, which may become waste on a dairy or be fed to other 
production groups (e.g., lactating cow refusals fed to heifers) 
that have dissimilar nutrient needs, thereby increasing the 
likelihood for higher nutrient excretion.53 Additionally, closely 
monitoring and ensuring the correct nutrition of individual 
groups of animals can minimize the risk of other nutritionally 
influenced diseases and conditions, such as ketosis, lame-
ness, and prolonged anestrous.38 Overall, managing feed and 
feeding programs to minimize waste while maximizing milk 
production can improve farm profitability and decrease the 
life-cycle emissions per pound of FCM. 

Reproduction

Perhaps not as apparent as nutrition, reproductive per-
formance greatly affects emissions per pound of FCM. Dairy 
cows that have extended calving intervals because of con-
ception failure spend more time out of peak milk when feed 
conversion into milk is most efficient. The total productive 
lifetime of many dairy cows is determined by reproductive 
performance, because reproductive problems are responsible 
for 26.3% of the selective culls in the United States.56 Over 
the past 30 yr, the reproductive performance and productive 
lifetime of dairy cattle have substantially decreased while 
milk production has increased.15,38 The negative effect per 
pound of FCM emissions caused by declining reproductive 

efficiency has likely been offset by increases in milk produc-
tion per cow. However, restoring reproductive performance in 
combination with increased milk yield would further reduce 
emissions per pound of FCM. 

Garnsworthy22 modeled the environmental impact of 
reproductive performance and milk production in the United 
Kingdom. The model found that both higher milk yield and 
improved reproductive performance (better estrus detection 
and conception rates) contributed to reduced CH4 and NH3 
emissions because of the smaller lactating and replacement 
herd population required to meet UK production quotas.22 

The cause of the decline in reproductive efficiency of 
dairy cattle is multifaceted and is not completely understood 
currently,32 because reproductive success is influenced 
by nutrition, genetics, health disorders during transition, 
management, and the environment.38 The level of repro-
ductive success across all US herds is variable by region, 
breed, and management,42 suggesting that improvements 
are achievable. 

Encouragingly, recent data show that the long-term 
trend of decreasing reproductive performance and surviv-
ability may be slowing or reversing.27,42 Extensive research 
in dairy cattle reproduction is needed to identify the fac-
tors impeding fertility and to further develop strategies to 
improve reproduction on commercial herds. Wide adoption 
of these successful reproductive strategies could potentially 
lengthen the productive life of the US dairy cow and lower 
emissions per pound of FCM. 

Sexed semen is a reproductive technology that has 
the potential to both help and hurt the impact of the dairy 
industry on air quality and climate change per pound of 
FCM. If used selectively, sexed semen can increase the rate 
of genetic gain in dairy cattle, allowing advantageous traits 
to become ubiquitous in the entire dairy cattle population.14 
Furthermore, on average, heifer calves are smaller than bull 
calves and cause fewer dystocias, which may allow for earlier 
breeding of heifers, and fewer mortalities and health prob-
lems.62 However, if all animals are bred with sexed semen (or 
even all heifers), the replacement population for the US dairy 
herd will increase in size. 

To keep the total population of dairy cattle at a level that 
does not create an oversupply of milk, the lactating cow cull 
rate must increase. Again, this can be advantageous, because 
poor performing animals and those with poor genetic merit 
would likely be culled, but in the context of environmental 
impact per pound of FCM, the widespread use of sexed semen 
could increase emissions per pound of FCM by shortening the 
total productive lifetime of dairy cows. Furthermore, a larger 
replacement herd size means more nonproductive emissions 
for each pound of FCM produced. 

Conclusions

Overall, this paper shows that some of the most im-
portant gains that can be achieved in mitigation of dairy 
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environmental impacts are tightly connected to efficiencies 
around feed and feeding as well as reproductive management.
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