Transcriptome assessment of healthy highrisk stocker cattle defines mechanisms of inflammatory regulation induced by tulathromycin metaphylaxis

B. Ramirez,¹ BS; W. Crosby,² DVM; A. Woolums,² DVM, PhD, DACVIM, DACVM; B. Karisch,³ PhD; M. Scott,¹ DVM, PhD

¹Veterinary Education, Research, and Outreach Center, Texas A&M University and West Texas A&M University, Canyon, TX 79015 ²Department of Pathobiology and Population Medicine, Mississippi State University, Starkville, MS 39762

³Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762

Introduction

Tulathromycin is commonly used as metaphylaxis to reduce bovine respiratory disease (BRD) risk. Current secondary pharmacodynamics characteristics of tulathromycin on the host are poorly understood. RNA Sequencing (RNA-Seq) techniques were used to measure gene expression in healthy cattle administered tulathromycin to elucidate the genomic mechanisms over time.

Materials and methods

Eighty-four commercial heifers (average: 239 kg; s.d. = 16 kg) were randomly enrolled into 2 treatment groups for 70 days: cattle received a one-time subcutaneous injection of tulathromycin on day 0 at label dosing (META, n = 42) or negative control (NOMETA, n = 42). Jugular blood samples from all cattle were collected into Tempus RNA blood tubes at days 0, 7, 14 and 21. Samples for RNA-Seq were randomly selected from 7 META and 7 NOMETA cattle never having been diagnosed with BRD throughout the study. Isolated mRNA from samples were sequenced (NovaSeq 6000, 150bp PE; ~ 40 M reads/sample) and bioinformatically processed via a bovine genome referenceguided HISAT2/StringTie2 pipeline. Differentially expressed genes (DEGs) were identified with the R packages edgeR and glmmSeq (FDR < 0.05). Functional enrichment analysis of DEGs was performed with KOBAS-i API (FDR < 0.05). Protein-protein interactions of DEG products were characterized with String-DB (Interaction Score = 0.150).

Results

One and 4 DEGs were identified at d 14 and d 21, respectively. At d 21, DEGs enriched for regulation of G protein-coupled receptor signaling (increased in META) and interferon alpha and beta signaling (decreased in META). Predicted protein interactions indicated G-couple protein activity with pro-inflammatory cytokine suppression in META at d 21.

Significance

Our study highlights a potential secondary mechanism of action for tulathromycin in high-risk stocker cattle which downregulates the expression of pro-inflammatory cytokines. Future investigations should focus on uncovering tulathromycin's secondary pharmacokinetics with respect to anti-inflammatory effect and genomic mechanisms in cattle which eventually develop BRD.

