Student Clinical Report

Problem Identification in a Dairy Herd

Mike Maroney, Fay Hillery \& Jeff Hookstead
Class of 1992, School of Veterinary Medicine
University of Wisconsin, Madison, WI

This study herd of 110 Holstein cows has a rolling herd average production of $19,500 \mathrm{lbs}$. The young family that owns and operates this dairy has a goal of a high quality registered herd with a $22,000 \mathrm{lb}$. rolling herd average. The 75 stall milk cow barn has a round-the-barn pipeline milking system. Because of the shortage of stalls, some of the cows are housed in loose-housing and milked in shifts in the milking barn. The single-group TMR is fed at an outside bunk and in the stall barn. This report is the work of three senior veterinary students. Their assignment was to identify and prioritize the production problems on this dairy using the "Goal Form" from The Bovine Practitioner, No. 26, 1991, pages 21 to 28.

Reproduction

Problems:

		Goals
1. Calving interval:	14.4 mos.	13 mos.
2. Average Days in Milk:	175 days	150 days
3. Dry period:	76 days	60 days
4. Voluntary Waiting Period:	75 days	55 days
(VWP heavy producers):	100 days	55 days
5. Days in Milk to First Breeding: 94 days	65 days	
6. Heat Interval:	36 days	21 days
7. Calving to First Breeding		
Interval:	$47 \%<85 \mathrm{~d}$	$80 \%<85 \mathrm{~d}$
8. Services per conception:	2.9	1.8

Economics:

Milk sales lost due to herd milking late and lower in the lactation curve:
 rolling days \#cows lb/day
ADIM

Discussion:

This herd's reproductive problems are significant and they feed into their replacement heifer problem. To gain insight into the economic loss due to the reproductive problems we calculated the loss in milk sales due to their late ADIM and found $\$ 16,500$ in lost profit. Their elevated ADIM is due to their prolonged calving inter-
val. We found that the prolonged calving interval is due to their voluntary waiting period of 75 days (100 days high producers) and poor heat detection. The prolonged VWP also inflates the dry period. Because animals aren't bred back sooner they milk later in their lactation curve when they are producing milk at lower levels. The owners watch for heat 5 minutes twice a day after turning the cows out and by watching for secondary signs of estrus while milking. The heat interval of 36 days indicates that they miss more than 50% of their heats.

Recommendation:

To improve the reproductive performance of this herd we recommend that the voluntary waiting period be shortened to fifty five days and that a teaser animal is used to improve their heat detection. These recommendations represent minimal investment with substantial economic gain.

Replacements

Problems:

1. Shortage of replacement heifers: 76 presently in herd

10% calf
mortality
Age at 1st
calf factor

97 cows $\times 47 \%$ cull rate \times and $15 \% \times(1+27 / 24)$
heifer cull
factor
2. Overage at first calving: Average $=27$ months Goal $=24$ months
3. Cull rate is too high: 47% cull rate \ldots Goal $=30 \%$
4. Overage at 1st breeding (too old to calve at 24 months): 15-16 months old before brought to farm to heat check \& breed
5. Losses of calves to Angus bull crosses: heifers not pregnant on 1st breeding are bred by an Angus cleanup bull.
75% conception. $.25 \%$ of $76=19$ Angus crosses sold = 9 lost Holstein heifer calves

Size of first calf heifers at calving is acceptable, although most are older than 24 months (see table). Prepuberal heifer growth does not show any excess or deficient rate of growth (see graph).

Economics:

Maintenance of heifers for 3 months extra prior to first calving:
3 (mo. over 24) x 30 days/mo. x $\$ 1.66 /$ day x 38 (1st lact. heifers/yr)

$$
=\$ 5677
$$

Replacement heifers in herd - number needed = 76 - 127 = 51 heifers SHORT
Changing age at 1st calving to $24 \mathrm{mo}=119$ needed $=$ -43 (raise / buy 8 fewer)
Changing cull rate from 47% to $30 \%=84$ needed = -8 (raise / buy 43 fewer)
Changing both cull rate and age 1 st calf $=76$ needed $=$ 0 None short! . . . 51 fewer

Cull rate: costs $\$ 25$ per cow for every 5% over 30% goal . . . $\$ 25$ x 97 cows x $4=\$ 9700$
This does not include buying replacements:
$\begin{array}{ll}\text { Cull cow selling price* } & =+\$ 700 \\ \text { Springing heifer purchase } & =\begin{array}{l}\$ 1200 \\ \end{array} \quad-\$ 500\end{array}$
*(1400 lb at \$.50 / cwt)

Reasons for culling $(\mathrm{N}=45):$		
Low production	$=$	15%
Mastitis	$=$	18%
Infertility	$=$	24%
Injured/sick	$=$	27%
Other	$=$	15%

Recommendations:

Current culling practices require a much larger herd of replacement heifers to keep the milking herd steady at 97 cows. Selling heifers should be discontinued until an excess is available, so that fewer springing heifers will need to be purchased. Because a large share of the culled cows are first lactation animals, it is unlikely that the $\$ 500$ lost on a cull cow replaced by a springing heifer is paid back before the new cow is culled.

Heifers calving on average later than 24 months of age also increases the size of the replacement herd required. By simply beginning to breed the heifers at 13-14 months of age and increasing heat detection ability, the age at first calving can be decreased from 27 to 24 months. To increase the ease of detecting heats, unbred heifers should be kept in a separate lot at the home farm, instead of being mixed in with a large group (20) of dry cows.

The use of an Angus cleanup bull for all heifers that don't settle on the first breeding leaves 25% of their heifers calving Angus crosses that are sold, losing 9 heifers that are potential replacements. If the heifers are bred twice, with a similar 75% conception rate on 2 nd breeding, only 25% of the 19 would be bred to Angus. Then only 2 heifer crosses would be sold instead of 9 , yielding 7 extra Holstein heifers.

Mastitis

Problems:

1. Average log linear somatic cell count (LLSCC) of 3.5
2. Only 75% of the herd below $200,000 \mathrm{scc}$ (goal is 85%)
3. Increased incidence of teat injury $=9 \%$ (goal 2\%)
4. 30% incidence of clinical mastitis (goal is 12% per year)

As in most dairy herds, mastitis is claiming a significant amount of potential revenue from this herd. Revenue loss is composed of reduced milk production, lost milk quality premiums, expenses incurred because of clinical cases and expenses due to culling.

Economics:

Revenue losses breakdown as follows:
31 cases of clinical mastitis/year:
31-12 (goal) x \$163/case = \$2097/year
Log linear SCC of 3.5 :
3.5-2 (goal) x 333 lbs / lact / LLSCC x 97 cow $=48,500 \mathrm{lbs}$ milk lost
$485 \mathrm{cwts} \times \$ 11 / \mathrm{cwt}=\$ 5335$
Premiums lost:
31 cent potential gain x 97 cows x 19595 (RHA) $=\$ 5892$.

Cull cost:
Since the owners buy animals to maintain cow numbers, the simplest way to calculate the cost is to compute the selling value - vs - buy back cost.

Cull cow (1400 lb) at $.50 / \mathrm{cwt}=+\$ 700$
Springing heifer $\quad=\frac{-\$ 1200}{-\$ 500}$

Recommendations:

Certainly it would be better to have wider stalls in the old barn. Currently the stalls are only 40 " wide. Remodeling would need to be based on cow comfort and

Cくンn Oquz

三

feasibility. Placing grates in the gutters behind the cows would increase stall length from the current length of 5' 6 ".

Building a mound in the pasture south of the calf hutches would provide a dry comfortable resting place during the summer months.

Obviously the overall cleanliness of the bunk area and the stalls in the barn is important. A milking time procedures analysis would be warranted to insure proper milking technique.

Finally a milking order based on high sec cows and known infected cows would also help reduce any transmission of contagious organisms.

Nutrition

Problems:

1. Heifer peaks depressed in summer (see graph)
2. Heifer/ cow peak ratio is depressed in summer
3. Inadequate bunk space

	Goals
67 lbs.	75 lbs.
67 lbs.	$73-77 \mathrm{lbs}$
1.25 ft cow in herd	$2.5 \mathrm{ft} /$ cow in milk
1.44 ft cow in milk	

Positive Indicators:

1. Prepuberal heifers are not overconditioned (see graph).
2. First calf heifers are of adequate size (see table).
3. Balance of ration is good (June cow peaks support 23,000 lbs. RHA)
4. Lactating animals are in good condition.

Economics:

Increase heifer peaks by 10 lbs during summer months:

10 lbs X 43 heifers $\mathrm{X} \$ 14$ net/lbs peak X .5 years

$$
=\$ 3,010 / \mathrm{yr}
$$

Discussion:

This herd has a good ration as born out by the June cow peaks of 100 lbs , which would support a RHA of $23,000 \mathrm{lbs}$. However, the bunk space is not adequate. The industry standard is 2.5 feet per cow. With a milking herd of 107 cows we would need 268 feet of bunk space. The limited bunk space limits the milking cows dry matter which drives milk production.

Recommendations:

We would recommend lengthening the bunk space so all milking cows could have equal access to feed. We also would recommend installing dividers in the bunk to decrease competition. (Total Economic Opportunity = $\$ 49,263$)

Report prepared August 9, 1991.

