Improving and Predicting Reproductive Performance

J. N. Wiltbank, Ph.D. Animal Science Department Brigham Young University Provo. Utah 84601

Reproduction in a beef cow herd is a fragile thing, easy to disrupt and difficult to re-establish. The beef cow has priorities. Her first priority is survival, her second priority is the survival of her calf, and her third priority is reproduction. This means the first two priorities must be met before the third can be accomplished. It is difficult, with today's economy, to have good reproduction without excessive cost. The purpose of this paper is to briefly outline those ingredients necessary for good reproduction to occur in a beef cow herd, show methods that can be utilized to predict reproduction performance, and outline methods for determining the economic feasibility.

Most beef herds contain many non-producers such as dry cows, replacement heifers and bulls, and many cows which wean light calves. As an example of non-producers, look at a beef herd containing 100 cows. In addition to the 100 cows, there would be 15 replacement heifers and 5 bulls. If 90 cows weaned a calf there would be 30 non-producing animals in this herd.

TABLE 1. Non-Producers in a 100 Cow Herd

No. Calves	Dry	Replacement		Non-Pro	ducers	Cost Per
Weaned	Cows	Heifers	Bulls	No.	%	Calf*
90	10	15	5	30	25	\$333
80	20	15	5	40	33	375
70	30	15	5	50	42	428

a \$250 per animal carrying cost

These non-producers must be reduced to make production of calves economically feasible. The cost of keeping non-producers is as great or greater than the cost of keeping producers.

Calves which are light at weaning will not pay the costs of keeping the cow. As an example, consider calves weaning at different weights.

TABLE 2. Weaning Weight and Net Return

Weaning Weight	Gross Return at 70¢	Cost of Keeping Cows	Net \$ Return
500	350	250	100
450	315	2 50	65
400	280	250	30
350	245	250	5
300	210	250	4 0

It does not take a mathematician to calculate the value of the heavy calf.

Calves wean light because they are born late or do not grow or both. As an example, look at the following table.

TABLE 3. Weaning Weight as Influenced by Time of Birth and Average Daily Gain

Day of Calving	Average Age At Weaning	Average 2.25	Daily Gain Birth to 2.0	o Weaning 1.75
0-20	220	565	510	455
21-40	200	520	470	420
41-60	180	475	430	385
61-80	160	430	390	350
81-100	140	385	350	315
101-120	120	340	310	280
121-140	100	295	270	245

Look at the differences in weaning weights in this herd. Calves varied from 565 lbs to 245 lbs. The late calves were light even when they gained 2.25 lbs a day. You cannot just leave calves on the cow and wean later and expect calves to continue to gain. Calves stop growing when grass dries up and milk production stops in the cow. To wean heavy calves they must be born early and they must have the genetic ability to grow and the necessary nutrients to grow. A cow must wean at least 350 lbs of calf to pay her own costs. When you consider paying cost of non-producers, each cow must wean a considerably heavier calf.

TABLE 4. Influence of Non-Producers and Weaning Weight on Lbs. of Calf Weaned and Net Return in a 100-Cow Herd

Calves Weaned in 100-Cow Herd	Total Animals in Herd	Non- Producers	W Per	of Calf Jeaned Animal 400 300		Net Return er Animal* 400 300
90	120	30	375	300 225	12	-40 -92
80	120	40	333	267 200	-17	-63 -100
70	120	50	292	233 175	-46	-87 -128

a Average weaning weight per calf

To make money, the number of non-producers must be kept low and the average weaning weight must be high. In cows weaning calves averaging 500 lbs, the pounds of calf weaned per animal in the herd varied from 375 lbs to 292 lbs. Pounds of calf weaned must be averaged out over a lot of

b Calves at 70¢ and \$250 carrying cost

non-producers. Most of the figures on net return are negative. Only in those cows weaning 500 lbs of calf and having only 30 non-producers are the results positive. Now look back to the last table and see how many calves weighed 500 lbs or more. Only those calves born early and gaining 2 lbs or more a day weighed over 500 lbs.

A worthwhile goal in reproduction is to have 75% to 80% of the cows calving in the first 20 days of the calving season and 95% of the cows calving in a 60-day calving season. When 80% of the cows calve in the first 20 days, getting 95% to calve in 60 days is relatively easy. Consequently, our attention in this paper will be centered on achieving 80% pregnancy rate in 20 days. If 80% of the cows are going to calve in the first 20 days of the calving season, then 95% to 100% must show heat in the first 20 days of the breeding season and 80% to 85% must become pregnant on first service. To achieve this, we must have control of our management in a beef cow herd. We can't just hope. Everything must be done correctly with attention given to details.

The number of cows becoming pregnant early in the breeding season is determined by the following formula:

Cows in heat 1st x Cows pregnant 20 days of breed- x from 1st service ing = Cows pregnant 1st 20 days of breeding season

Cows becoming pregnant from first service is a combination of cow fertility and bull fertility. Therefore, three things must be accomplished if 75% to 80% of the cows are to become pregnant the first 20 days of the breeding season.

- 1. Ninety-five to 100% of the cows must show heat the first 20 days of the breeding season.
- 2. Cow fertility must be high.
- 3. Cows must be bred by a fertile bull.

These three factors are not additive, but multiplicative. In other words, the formula is:

Poor performance in one area can't be averaged out. If one factor is low, then, ultimately, the cows pregnant early in the breeding season will be low. Three examples can illustrate the importance of this concept.

	Cows in Heat 20 days (%)	×	Cow Fertility (%)	×	Bull Fertility (%)	=	Cow Pregnant 20 days (%)
Ex. 1	95	×	95	×	95	:=	86
Ex. 2	65	×	95	X	95	=	59
Ex. 3	65	×	95	×	60	=	37

In Example 1, only 86% of the cows are pregnant, even though all factors are 95%. In this equation you do not average the factors, but they are multiplied; consequently, $95\% \times 95\% \times 95\% = 86\%$.

In Example 2, only one factor, in heat in 20 days, is low, but note that even though the other two factors are high, only 59% of the cows are pregnant. In Example 3, two of the factors are low; consequently, only 37% of the cows are pregnant early in the breeding season. The proportion pregnant can be no higher than the lowest factor.

These examples illustrate that to achieve good fertility all factors must be high. Consequently these three factors will be discussed in some detail.

Cows in heat in the first 20 days: The four factors determining how many cows will show estrus in the first 20 days are:

- 1. Calving time
- 2. Body condition of the cow
- 3. Suckling
- 4. Age of cow

Calving time and age of cow: More early calving cows will show heat the first 20 days of the breeding season than late calving cows and fewer young cows show heat than older cows. An example can help in understanding this concept.

TABLE 5. Calving Time and Heat, First 20 Days of Breeding Season

Time of Calving	Young Cows (%)	Mature Cows (%)
First Month	79	94
Second Month	44	69
Third Month	5	10

In a group of cows calving over a three month period, the number of mature cows showing heat in the first 20 days of breeding decreased from 94% in cows calving in the first month to 10% in those calving in the third month. This information would indicate that most older cows calving the first month of the calving season will show heat the first 20 days of breeding, but essentially none that calve the third month will show heat early. If a person is interested in 90 to 95% of the cows showing heat early in the breeding season, length of the calving season must be decreased to at least 60 days.

To help with understanding the concepts in this paper a hypothetical ranch will be utilized. The breeding season last spring started May 8th and ended July 27th. The cows were checked for pregnancy in September and the calving dates were estimated as follows:

Estimated	Total	В	ody Conditi	ion	Ave. Calvir	ng Date
Calving time	Cows	Thin	Moderate	Good	Calving	Julian
Feb. 14-Mar. 5	60	20	20	20	Feb. 24	55
Mar. 6-Mar. 25	60	20	20	20	March 16	75
Mar. 26-Apr. 14	60	20	20	20	April 5	95
Apr. 15-May 4	60	20	20	20	April 25	115
Total	240					

Body condition of the cows was estimated at the time of the pregnancy diagnosis. The first problem will be concerned with the effect of expected calving date on pregnancy rate. In this problem we will utilize the 80 cows in moderate body condition. They are expected to calve from February 14 to May 4. Twenty cows calved between February 14 and March 5th. Breeding will start May 15th and cows will be bred 60 days. A step by step solution to the problem is given.

First Problem in Post-Partum Cows-Steps to Solution

- 1. Use work sheet for post-partum cows.
- 2. The expected calving dates have been broken into 20day intervals. Example: Feb. 14 to March 5, March 6 to March 25, etc.
- 3. The average calving date for each group was calculated. Example: Feb. 14 to March 5, then the average calving date was Feb. 24. The Julian date was then found; i.e. Feb. 24 = 55, March 16 = 75, etc.
- 4. Record number of cows in each calving group on work sheet for first, second, and third 20 days.

 Example: Feb. 14 to March 5 = 20 cows calved.
- 5. Look up Julian date for start of calving. Example: May 15 is day 135.

Calculate and record Julian date at end of first 20 days of breeding.

Example: 135 + 20 = 155. Also 135 + 40 = 175 or end of 2nd 20 days or 40 days of breeding. 135 + 60 = 195 or end of 3rd 20 days or 60 days of breeding.

- 6. Find difference between average calving date and date at end of 20 days of breeding.
 - Example: 155 55 = 100. Do same for end of 40 and 60 days. 175 55 = 120; 195 55 = 40.
- 7. Look up expected percent cycling at the indicated days post-partum in Table 7 under moderate and record. Example: 100 days post-partum 100% are cycling.
- 8. Calculate expected number of cows cycling. Example: 20 cows x 100% = 20 cows cycling.
- 9. Assume a 60% conception rate.
- 10. Calculate expected number of cows pregnant.Example: 20 x 60% = 12.
- 11. Calculate for second 20 days of breeding June 5 through June 24.
- 12. Look up cycling 120 days -100% x 20 = 20.
- 13. Subtract cows pregnant to previous breeding.
- 14. Assume conception rate of 60%.

- 15. Calculate pregnant $-8 \times 60\% = 5$.
- 16. Calculate expected number of cows pregnant. Figure for 3rd 20 days. Remember previously pregnant involves 2 breedings. In this example 12 + 5 = 17.
- 17. Repeat procedure for each 20 days of expected calving period.

Body Condition is important in determining the proportion of cows showing heat and becoming pregnant. Many cows in thin body condition do not become pregnant. In one study the proportion open varied from 77% in very thin cows to 5% in cows in good body condition.

TABLE 6. Relationship Between Body Condition and Pregnancy Rate in Florida

	Very Thin	Thin	Slightly Thin	Moderate	Good
No. of Cows	115	545	564	344	234
Percent Open	77	49	27	14	5
Early Calvers (%)	5	15	19	40	56

Only 5% of the thin cows will calve early compared to 56% of the cows in good body condition. The main reason thin cows do not become pregnant or calve late is that the proportion of cows showing heat is delayed in cows in thin body condition. Note in the next table how the proportion of cows which have shown heat by 60 days after calving differs in cows that are in good body condition (91%) compared to those in moderate (61%) or thin (46%) body condition.

TABLE 7. Body Condition at Calving and Heat After Calving

Body					Day	ys Ai	ter (alving			
condition at calving	No. Cows	30 %	40 %	50 %	60 %	70 %	80 %	90 %	100 %	110 %	120 %
Thin Moderate	272 364	0 10	19 21	45	46 61	79	62 88	66 92	70 100	75 100	77 100
Good	50	12	31	42	91	96	98	100	100	100	100

By 100 days after calving only 70% of the cows in thin body condition had shown heat.

A second problem involving the same ranch will be used to illustrate the relationship between body condition, calving date, heat and pregnancy.

2nd problem:

Use all cows in Problem #1

Use Table 7

Start breeding May 15th and breed 40 days

Assume a 60% conception rate

Use Cow Worksheet, Problem #2.

© Copyright American Association of Bovine Practitioners; open access distribution.

Ş	Dec.	90,	5	702	703	704	705	206	707	208	709	710	711	712	713	714	715	716	717	718	719	720	721	722	723	724	725	726	727	728	729	730
-	-	. 0/9	671	672	. 673	674	. 929	929	2 229	. 829	679	2 089	681 7	682 7	683 7	684 7	685 7	989		889	689	2 069		692 7	693 7	694	969	969	697 7	2 869	669	
-	╁										\dashv			4.1		_			9 687				0 691	20.0						_		6
=	丰	639	040	641	642	3 643	1 644	645	646	647	648	648	650	651	652	653	654	655	929	657	658	629	099	661	99	8 663	664	99 9	999	. 99	899	699
-	Š.	609	610	611	612	613	614	615	616	617	618	619	620	621	622	623	624	625	626	627	628	629	630	631	632	633	634	635	989	637	638	-
α	Aug	578	579	580	581	582	583	584	585	586	587	588	589	290	591	592	593	594	595	596	597	298	599	900	601	602	603	604	605	909	607	909
_	July	547	548	549	550	551	552	553	554	555	556	557	558	559	999	561	562	563	564	565	999	267	568	569	570	571	572	573	574	575	576	222
ď	June	517	518	519	520	521	522	523	524	525	526	527	528	529	530	531	532	533	534	534	536	537	538	539	540	541	542	543	544	545	546	1
ľ	May	486	487	488	489	490	491	492	493	494	495	496	497	498	499	500	501	502	503	504	505	909	507	508	509	510	511	512	513	514	515	516
,	Ā.	456	457	458	459	460	461	462	463	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478	479	480	481	482	483	484	485	
6	Mar.	425	426	427	428	429	430	431	432	433	434	435	436	437	438	439	440	441	442	443	444	445	446	447	448	449	450	451	452	453	454	455
6	Feb.	397	398	399	400	401	402	403	404	405	406	407	408	409	410	411	412	413	414	415	416	417	418	419	420	421	422	423	424	_		
-	-	366	367	368	369	370	371	372	373 ,	374	375	376	377	378 4	379 4	380	381 4	382 4	383 4	384 4	385	386	387	388	389	390	391	392	393 7	394	395	396
Š	+	-	2 3	3 3	4 3	5 3	9	7 3	8	6	10 3	11 3	12 3	13 3	14 3	15 3	16 3	17 3	18 3	19 3	20 3	21 3	22 3	23 3	24 3	25 3	26 3	27 3	28 3	29 3	30 3	31 3
43	Dec.	335	336	337	338	339	340	341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359	360	361	362	363	364	365
-		305	306	307	308	309	310 (311	312 (313 (314	315 3	316	317	318	319	320	321	322	323	324	325	326	327	328	329	330	331	332	333	334	
9		274 3	275 3	276 3	277 3	278 3	279 3	280 3		282 3	283 3	284 3						_		┢		294 3	295 3	296 3		298 3	299 3	300		302 3	303 3	304
-	-							<u> </u>	1 281	<u> </u>	_		5 285	6 286	7 287	8 288	9 289	0 290	1 291	292	3 293	-			7 297	-	_		301))
-	8	3 244	1 245	5 246	3 247	7 248	3 249	3 250	251	252	253	3 254	1 255	256	257	258	259	260	261	262	263	3 264	1 265	266	3 267	7 268	3 269	9 270	271	272	273	
α		213	214	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243
_	<u> </u>	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	209	210	211	212
"	June	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180	181	1
ď	May	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151
*	Apr.	91	95	93	94	98	96	26	86	66	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	
۳	Mar.	09	19	62	63	64	65	99	29	89	69	20	71	72	73	74	75	9/	11	78	79	89	81	82	83	84	92	98	87	88	89	90
[Feb.	32	33	34	35	36	37	38	33	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	26	57	58	59	I		1
F	7	-	2	က	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	56	27	28	29	30	31
3	Day	-	2	က	4	2	9	^	∞	6	10	11	12	13	14	15	16	17	18	19	20	72	22	23	24	52	56	27	28	53	30	31

JULIAN CALENDAR

		Total Preg.	19																
		Preg- nant	2																
		Conc Rate	09	09	09	09													
	ted	Heat This Pariod	3																
ıys	Expected	Prev.	17																
Third 20 Days		h Heat	20																
Third		\$ E	100																
	a)	No. Cows	20																
	Julian Date	Days P P	140																
	Julia	End 60 Days	195																
		Ave. Calv Date	55							4									
		Preg. nant	5																
		Conc	09	09	09	09													
	Expected	Heat This Per.	8																
/S	Exp	Prev.	12																
Second 20 Days		in Heat No.	20																
puose		- ×	100																
Ś		No. Cows	20																
	Date	Days P P	120																
	Julian Date	End 40 Days	175																
		Ave. Calv Date	55										-						
	pe	Preg- nant	12																
	Expected	Conc Rate	09	09	09	09													
		In Heat No.	20																
First 20 Days		ž ×	100																
First 2		No. Cows	20																
	Julian Date	Days P P	100																
	Julia	End 20 Days	155																
		Ave. Calving	55	7.5					7										
		P Call	2-24	3-16	4-5	4-25													

COW WORKSHEET

Problem #1

© Copyright American Association of Bovine Practitioners; open access distribution.

		F F																										
		Ė						\vdash																		-		
		Conc																\vdash						-		-	-	
	ъ																_	<u> </u>										
	Expected	Heat This		ļ									<u> </u>		<u> </u>											_	_	
Days	ũ	ÉÉ													_		_	_										
Third 20 Days		h Head		-																								
F																		<u> </u>										
	ate	2 S	<u> </u>																									
	Julian Date	144																<u> </u>										
	라	End 60 Days																										
		Ave. Calv Date													j													
		Prog- nant																										
		Conc Rate		09	09	09		09	09	9		09	09	09		09	09	9										
	Expected	Hert This Per.																										
S	Expe	Prog.																										
Second 20 Days		No.																										
ond 2		In Heat																										
Sec		Ne. Cowel		20	20	20		20	20	20	:	20	20	20		20	20	20										
	te	Days P P	120	.,		-	100		.,	.,	80				09										-			
	Julian Date	End D	175 1				175 1				175 8				175 6													
	Jul	Ave. Calv E Date 40	55 1	Ţ	M	9	75 1	L	Σ		95 17	L	Σ	G	115 1	Ή	M	G									-	
		Ave	5		,		7				5				11								_					
																					\dashv		-					
	Expected	Pretj.							_																			
	Expe	Conc		09	9	9		09	09	09		09	09	09		09	09	09							-			
ls.		In Heat																										
First 20 Days		*																										
First 2		Na. Cows		20	20	20		20	20	20		20	20	20		20	20	20										
	Julian Date	Days P P	100				80				9				07													
	Julian	End 20 Days	155				155				155				115													
		Ave. Catving	55	Т	M	G	7.5	Т	Σ	9	95	Т	М	O	115	Τ	M	G										
		Call Per.	2-24				3-16				-5-				4-25													
l			2		١		3-		ı	I	4-5			١	4	ı i		i 1		l	ļ	ļ		į		·	ļ	١

Problem #2 COW WORKSHEET

There are two approaches to keeping cows in moderate body condition. First, cows should be carefully observed 1 or 2 months before calves are scheduled to be weaned. If cows are thin, calves should be weaned right away. This will give cows a few months of good feed before the quality of the forage declines. Calves are probably growing at a slow rate because of low quality feed available. Consequently weaning will help them.

The second approach which could be used is to sort cows by body condition at weaning time. Cows should be scored for body condition from 1 (thinnest) to 9 (fattest). A sheet describing a method of scoring follows this paper. Decisions on feeding should then be made. The amount of weight gain needed to change body condition must be kept in mind. To help with this, the following table is included.

TABLE 8. Weight Needed To Increase Body Condition

		Weig	ıht gain (lb.)		
Body Condition at Weaning	Body Condition at Calving	Calf Fluids and Membranes	Fat or Muscle	Total	Days Weaning to Calving	ADG
5 (moderate	e) 5	100	0	100	130	0.77
3	5	100	160	260	130	2.00
3	5	100	160	260	200	1.30
3	5	100	160	260	100	2.60
2	5	100	240	340	130	2.60
7	5	100	—160	 60	130	0.46

The body condition desired at calving is a 5. Note first that a cow that scores a 5 at weaning must gain 100 lbs in order to calve with a body condition of 5. This 100 lbs represents the weight of the calf, fluid, and membranes. Thus, even a cow with ideal body condition at weaning must gain nearly .8 lbs a day to calve in ideal condition. A cow that scores only a 3 at weaning time must gain 2.0 lbs a day when there are 130 days from weaning to calving. If calves are weaned earlier so there are 200 days between weaning and calving, she only has to gain 1.3 lbs. However, when calves are weaned late and there are only 100 days from weaning to calving, a cow scoring a 3 at weaning must gain 2.6 lbs. a day to score a 5 at calving time. To change a cow from one body condition to the next requires the cow to gain or lose approximately 80 lbs of fat and/or muscle.

Each year is different. Cows are different. You must assess the body condition of your cows and the forage available, and then put together a plan so cows will score a 5 or 6 at calving time. Don't ignore the problem and think it will go away. Thin cows will come back to haunt you next year. They will either be open or calve late.

Suckling. The interval from calving to first heat was 20 to 42 days longer in cows suckling calves than in milked cows. Methods that might be used to shorten the interval from calving to first heat are to wean the calf early or decrease the frequency of suckling.

TABLE 9. Effect of Suckling on the Interval from Calving to 1st Heat.

	Suckled	Non-Suckled	Difference
Type of Cow	(Days)	(Days)	(Days)
Holstein	` 5 8 ′	`38 ′	20
Milking Shorthorn	94	64	30
Beef	73	31	42

Flushing and 48-hour calf removal can be helpful in improving reproductive performance. Neither practice alone is as beneficial as a combination of the two. A study conducted at Howell's in South Texas with first-calf cows that were slightly thin (scored at 4) at calving time demonstrates this principle.

TABLE 10. Pregnancy Rates Following Calf Removal and Flushing.

	Control	Fla	CRb	FI + CR
No. Cows	18	21	21	21
Pregnant (%)				
21 days	28	14	38	57
24 days	56	52	62	72
63 days	72	76	62	86

^a Flushed with 10 lbs. corn for two weeks before breeding and first three weeks of breeding.

Pregnancy rate was only increased in the group where flushing and calf removal were both used. Flushing cows for 3 weeks before breeding did not increase pregnancy rate.

Feeding thin cows (3 or less) for short periods after calving to get them to show heat does not work. This principle is illustrated in the following table:

TABLE 11. Changing Body Condition Post-Calving.

Во	dy Condition	Weight	Days	
At Calving	Needed at Start of Breeding	Gain Needed	Calving to Breeding	ADG
3	5	160 lbs.	80	2.0
3	5	160 lbs.	60	2.7

A minimum of 2 lbs a day must be gained by the cow scoring a 3 at calving if we want her to have enough body condition to show heat early in the breeding season. If, in addition to scoring 3, she has only 60 days from calving to breeding, she must gain 2.7 lbs per day. This is an almost impossible task. As soon as you increase her feed, she will increase her milk production. Therefore, only a small amount of the nutrients fed go to weight gain. It is difficult, if not impossible, to get her to gain 2 lbs a day while nursing a calf. This means that we need to put the condition on the cow before calving.

Cows which score a 4 or greater will respond beautifully to a little extra feed for 3 weeks or so prior to breeding *if* the calves are removed for 48 hours when the bulls are placed in the breeding pasture. Note what happened again at Howell's

b Calf removal for 48 hours at start of breeding.

© Copyright American Association of Bovine Practitioners; open access distribution.

Total Pres P. E. Rate 8 and Partod Expected ž. Third 20 Days Comp Julian Date Days P P End 60 Days Preg-nani Conc Heat This Per. Expected Pres. Second 20 Days No. ske d Julian Date End 40 Days Ave. Calv Date Perg Expected 9 9 9 9 9 00 9 9 09 9 09 9 Conc Pate First 20 Days 20 20 20 20 20 20 20 20 20 20 20 20 5 E Julian Date 80 9 70 14 155 100 155 155 155 End 20 Days 115 95 75 G Σ G Σ G Σ G Σ Ę 4-25 2-24 3-11 4-5

COW WORKSHEET

Problem #3

NOVEMBER, 1984 171

with flushing alone compared with flushing and calf removal.

How do you get cows to gain a little weight just prior to breeding? Grain is one way. A good pasture which has some dry matter is another. However, you cannot expect a cow to gain weight on little short green grass. That kind of grass is 90% water. Get good hay, grain or a pasture that has some good growth or you will be disappointed.

Removing calves for 48 hours can be a problem in some situations. The best way to accomplish it without extra labor being involved is to remove calves for 24 hours, work the calves (brand, castrate, etc.) and then turn them back to their mothers at the end of the 48-hour period. Calves must *not* nurse for a 48-hour period to get maximum results.

Table 12 indicates what can be expected from calf removal and flushing. Note little or no change in thin cows showing heat.

TABLE 12. Body Condition at Calving, Flushing, Calf Removal for 48 Hours & Heat.

	30	40	50	60	70	80	90	100	110	120
Thin Moderate	0 45		79	55 88		100	100	80 100	85 100	85 100
Good	42	91	96	98	100	100	100	100	100	100

To understand what 48-hour calf removal and flushing can accomplish, problem number 3 is provided.

Use cows in Problem #2 but remove the calves for 48 hours and flush the cows. Use Table 12 to estimate cows showing heat. Calculate cows pregnant after 20 days of breeding. Use 60% conception rate. Compare results to Problem #2.

Fertile Bulls must (1) produce adequate sperm, (2) a large proportion of the sperm produced must be normal, and (3) the bulls must have the desire and ability to deposit the sperm in the cows. Scrotal circumference is a good measure of semen production. In can be measured quickly and easily with a tape. Available data indicate that bulls with a scrotal circumference of less than 30 cm have reduced fertility. Ten to 15% of the bulls in most breeds have little or no desire to breed. Simple reliable tests for determining these bulls in all herds are yet to be developed. However, reliable tests for bulls who have been handled regularly have been developed.

The effect of selecting bulls for semen quality was recently demonstrated at the King Ranch. Semen from 79 bulls was collected and evaluated. Twenty-seven of these bulls were selected and placed with 675 cows. These 27 bulls had 80% or more normal sperm. Another 26 bulls were placed with 655 cows. These bulls were selected as a representative sample of the original group of bulls. As an example, 52% of the original group had 80% or more normal sperm. In the control group of bulls, 14 (54%) had 80% or more normal sperm. In the original group, 16% had less than 40% normal sperm. Pregnancy rates after 120 days of breeding were 93% in the selected group and 87% in the controls. A study the

second year compared bulls with 80% or more normal sperm, bulls with 70% or more normal sperm and control bulls. Five percent fewer cows bred to the control bulls became pregnant than those bred to the bulls selected for semen quality.

Bulls should be evaluated each year. Semen quality will improve in certain bulls from the first semen collection to the second. If a bull has poor semen, collect a second time immediately. If semen is still poor, collect the bull 3-4 weeks later. Then make a decision. Do NOT compromise. Do NOT use a bull with poor semen.

TABLE 13. Bulls Selected for Semen Quality at King Ranch.

	Multiple	Sire - 1980*	Multiple Sire - 1981								
	Control	80% or Over	Control	80% +	70% +						
Number Exposed Pregnant	572 87%	656 93%	1,179 85%	522 90%	769 91%						

a Four buils per 100 cows

Cow Fertility is affected by two factors: time from calving to breeding and weight change near breeding. Conception rate at first service increases markedly as interval from calving to breeding increases up to 40 days post-calving. By 50 days after calving, cows have generally neared maximum conception rates. This means higher conception rates at first service in early calving cows.

Cows losing weight after calving have a lower conception rate than cows gaining weight. Forty-three percent of the cows losing weight conceived on first service compared to 60% of the cows gaining weight.

The effect of days post-calving, weight change following calving and selecting bulls for fertility is shown in Table 14.

TABLE 14. Conception Rate As Influenced By Weight Change After Calving, Fertile Bulls and Time After Calving.

	D	Unteste ays after	-	Bulls t	ested for poter Days after ca	
	30	30-60	Over 60	30	30-60	Over 60
Losing Wt.	21	33	43	21	43	43
Gaining Wt.	41	53	63	41	80	

^a 70% or more normal sperm, physically sound, scrotal circumference over 32 cm, and libido.

Problem #4 is designed to show the effect of this on pregnancy rate. Selected cows from the hypothetical ranch have been used. Calves were removed for 48 hours.

Problem #4

	Ві	red By	Tested B	 ulis	В	Bred By Tested Bulls									
Calving		Cows	Modera			Cows	Moderate Cows								
Date	LOSS	Gain	Loss	Gain	Loss	<u>Gain</u>	Loss	Gain							
Feb. 14															
Mar. 6	20	20	20	20	20	20	20	20							
Apr. 18															
May 8	20	20	20	20	20	20	20	20							

				1			1	! 1		l	1	I	1 1	l	1	1	1	1	I	1 1	1 1	ı	l	1 1		l	1	ı	1	1	1	ı
			ίty			Total Preg.																									_	
			tili			Prag. nani																										
ght	ight		fer			Conc																										
wei	We	p	for		ted	Heat This Paried																										
ing	ning	este	ted)s	Expected	Prey.																							ļ		-	
= Losing weight	= Gaining weight	= Untested	T = Tested for fertility	Third 20 Days			-																									
L =	9	Ü	□ .	Third		× 11841													-													
						Ne. Cours																										
					Date																											
					Julian Date	5kg - 5kg																										
				-	_	alv End																						_				
				-		Ave. Calv Date																*					-					
				ŀ		. T																										
						20 E																										
		HEET			Expected	Hearl This																										
		/ORKS		ıys	ă	F P																										
		COW WORKSHEET	1	Second 20 Days		in Heat																										
		J	•	econd		*																										
		#	(ַ מ																												
		Problem #4			Jate	Sy a																										
		Pro			Julian Date	End 40 Days																								1		
					ے	Ave. Calv Date																										
				-		•																										
						Preg-																										
					Expected	Rate																										
					ă	9		_		_			0	0	0	0			4	4	4	7		2	2	2	2					
				ays		- Heat		14	16	14	16		0 20	0 20	0 20	0 20								1	1	1	1			\dashv		\dashv
			6	rirst zu uays		*		70	80	70	80		100	100	100	100			19	19	19	19		61	61	61	61					
			i	HIST	g.	No.	0	20	20	20	20		20	20	20	20			20	20	20	20		20	20	20	20					
					Julian Date	Syst .	100	n	U	H	T		Þ	n	Ţ	H		9	n	n	[⊣		n	n	T	H					
					길	End 20 Days	155	L	G	'n	Ŋ		ы	Ö	T	G		5 155	Ţ	G	د	Ŋ		ر	9	נו	G				-	_
						Ave. Calving	55	<u>[-</u> 4	į.	Η	Ţ		Σ	Σ	Σ	Σ		11	£-1	Ţ	<u>[</u>	L		Σ	Σ	Σ	Σ					
						Call Per.	2-24											4-25														
				'			این	•									. '	7	'	,										•		

NOVEMBER, 1984 173

Use Table 14 for conception rates, tables 7 and 12 for heat rates. Breed 20 days.

The O'Connor method was devised to cause most cows to calve early in the calving season and decrease the number of non-producers, thus optimizing pounds of calf weaned per animal in a cow herd and increasing the net return. All factors discussed previously were combined to cause this to happen.

The O'Conner management system was first put into practice at Mr. Tom O'Conner's near Victoria, Texas. Reproductive performance in a small group of cows was noted to be exceptionally high.

Reproductive Performance In A Herd At O'Connors

	% Pregnant A	After Breeding	
21 days	42 days	63 days	84 days
80	87	87	93

A large proportion of the cows became pregnant in a short period because Mr. O'Conner:

- 1. Calved all cows in this group at least 30 days prior to the start of the breeding season.
- 2. Cows were in moderate or good body condition at calving times.
- 3. Cows were gaining weight for three weeks prior to the start of the breeding season and for the first three weeks of the breeding season.
- 4. Calves were removed from cows for 48 hours at the start of the breeding season.
- 5. Cows were bred to fertile bulls.

The number of cows involved was small; therefore, an experiment was designed at Brigham Young University to further test the concepts of this management system and compare pounds of calf weaned with a control group. The work was done cooperatively on a ranch at Elberta, Utah. Mr. Dale Jolley was the manager. Two hundred and thirty cows were checked for pregnancy in October. An attempt was made to divide the cows into groups by stage of pregnancy. The cows had been exposed to bulls for 5 months and some cows were only 35-40 days pregnant at the time of pregnancy examination. Cows selected to be in the O'Conner management group were all early calvers (calving 30 days before the start of the breeding season) while cows in the control group were expected to calve for the 150-day period. The control group contained the same percentage of early calving cows as was found in the original group. Cows were scored for body condition and were allotted so each group was similar. Most cows in both groups were in moderate or good body condition at calving time. Cows in the O'Conner group were full fed corn silage starting two weeks before breeding and were continued on this ration for the first three weeks of breeding. Calving started in the last of January and bulls were turned with cows on April 22nd. All bulls were evaluated for fertility four weeks before the start

of the breeding season. All bulls turned with the O'Connor group had testicles larger than 32 cm in circumference and had more than 70% normal sperm. Calves were removed from cows for 48 hours and the bulls were placed with the cows at the time of calf removal.

Thirty-three of the 85 cows in the O'Conner management group showed heat within 48 hours after calf removal. Twenty-five days after the start of the breeding season 95% had been bred. This increased to 98% after 46 days of breeding.

Reproductive Performance At Elberta, Utah, Using O'Connor System

	Cows Manag		
<u>0</u>	'Connor System	Control System	Difference
No. Cows	89	86	
Showing heat after breeding (%)			
25 days	95	59	36
46 days	98	72	26
Pregnant after 1 breeding	(%) 80	50	30
Calved (%)			
After` 20 days	80	28	52
After 40 days	91	52	39
After 60 days	99	72	27
After 120 days	99	93	8

Conception rate at first service was high in the O'Conner group (80%). Seventy-five percent of the cows in the O'Connor group appeared to be pregnant after 21 days of breeding. At the time of pregnancy exam, only cows bred the first 11 days of the breeding season could be checked for pregnancy. Fifty-four (64%) of the 85 cows were pregnant. It was estimated from heat dates and conception rate that 10 more cows would be pregnant in the first 20 days of breeding. Thus, a 75% pregnancy rate was estimated after 21 days of breeding.

Eighty percent of the cows managed under the O'Connor system calved the first 20 days of the breeding season. This was in contrast to 28% in the control group. Most of the O'Connor cows (91%) had calved in 40 days while only half (52%) of the controls had calved. It was 120 days before 91% of the control cows had calved. Application of five principles resulted in large numbers of cows pregnant in a short period time.

This can be used as a model to improve fertility in cow herds. The following programs must be developed to cause this to happen.

- 1. A sixty-day breeding season.
- 2. A nutrition program to insure all cows in at least moderate body condition at calving.
- 3. A nutrition program to make certain cows are gaining weight for 3-week period prior to breeding and first 3 weeks of breeding.

- 4. A method of removing calves for a 48-hour period at the start of the breeding season.
- 5. A program for evaluating bulls for potential fertility each year,

The next question—Does it pay? Estimates of calf weaning weight have been made and additional costs are known. The additional costs were \$1,095 in 89 cows in the O'Connor System.

It is estimated 5,123 additional pounds of calf will be weaned, or approximately 51 lbs of calf per cow bred. It is estimated that this will increase the income \$1,900 in a 100-cow herd if calves bring 60¢, or a 181% return on the investment of \$1,095.

Estimated Economic Value of the O'Connor Management System

	Cows Mana	ned Under	
	O'Connor System		Difference
Additional Costs:			
Feed	\$ 910	0	\$ 910
Labor	60	0	60
Semen Evaluation	125	0	125
Total	\$1,095		\$1,095
Production:			
No. Calves Weaned	85	82	3
Ave. Weaning Weigh	nt (lbs.) 529	486	43
Total Lbs. Weaned	44,974	39,851	5,123
Estimated Gross Incom	e:		
\$60/cwt	26,985	23,910	3,075
\$65/cwt	29,233	25,903	3,330
\$70/cwt	31,482	27,896	3,586
Increase in Estimated I	ncome:		
\$60/cwt	25,890	23,910	1,980
\$65/cwt	28,138	25,903	2,235
\$70/cwt	30,387	27,896	2,491
Return on 18-month Inv	vestment:	04-	

Increased Income	Costs
1,980 +	$1,095 \times 100 = 181\%$
2,325 +	$1,095 \times 100 = 204\%$
2,491 +	$1,095 \times 100 = 227\%$
	1,980 + 2,325 +

Reproduction can be improved. Each thing must be done correctly . . .

- 1. Cows should calve in a 60-day period;
- 2. Be in moderate body condition at calving time;
- 3. Be gaining weight at the start of the breeding season;
- 4. Calves should be removed from cows for 48 hours at the start of the breeding season;
- 5. Cows should be bred to fertile bulls.

To help calculate the economic importance in other cow herds Problem #5 was set up.

Problem #5

Calculate the pounds of calf weaned using the following example: calf weighed 80 lbs at birth and gained 2.25 lbs per day; wean October 9; breed for 60 days.

Problem #5

		Wt. change near breeding	Cows bred by		
Calving Time	Body Condition		Untested buils	Bulls tested for potential fertility	
2-14 to 3-16	Thin	Losing	_	20	
	Moderate	Losing	_	20	
	Moderate	Gaining	20	20	
4-18 to 5-8	Thin	Losing	20	_	
	Moderate	Gaining	_	20	
	To Calculat	e Average Wear	ning Weigh	t	

Cows Pregnant in	Ave. Date bred (Julian)	Ave. Birth date (Julian)	Weaning date (Julian)	Weaning age (days)	Gain to wean	Weaning weight (lbs.)
1st 20 days of breeding	155					
2nd 20 days of breeding	175					
3rd 20 days of breeding	195					
282-day (estation p	eriod				

There is one other important ingredient to get from where you are to where you want to be. You have to calve early in the calving season.

The length of the breeding season is an important factor in determining pregnancy rate. Late calving cows have smaller calf crops than early calving cows. As an example, pregnancy was 88% in early calving cows compared to 60% in late calving cows, in cows calving from Nov. 15 to May 21.

Calving Time and Pregnancy

		Breeding Time	
	Feb. 10 to April 11	Feb. 10 to June 11	Feb. 10 to August 9
Time of Calving	60 days	120 days	180 days
Nov. 15 to Feb. 10 (%)	70	85	38
Feb. 11 to May 21 (%)	36	57	60

Similar results have been noted in an 80-day breeding season. Pregnancy rate was decreased from 88% in early calving cows to 60% in late calving cows. Cows calving early have more time to show heat before start of breeding. Consequently, more will become pregnant.

The only reliable method for making sure cows calve early in the calving season is to have a short breeding season. Results shown here indicate the breeding season should not last more than 60 days.

Shortening the breeding season from 150 days or even from 90 days to a 60-day season may present a cash flow problem. The first year the breeding season is shortened there could be fewer calves for sale. Therefore, some suggestions of how this can be accomplished would appear

Problem #5 Pounds Calf Weaned

Group No.	1st 20 days	2nd 20 days	3rd 20 days	Totai Ibs.	\$ @ 65¢	\$ Per cow	
1A							
No. Calves							
Ave. Weight		13					
Total Weight							
1B							
No. Calves							
Ave. Weight							
Total Weight				 - 			
-	8						
10							
No. Calves							
Ave. Weight		-					
Total Weight						—	
Total Worgin							
1D							
No. Calves							
Ave. Weight							
Total Weight							
•				-11			
2A							
No. Calves							
Ave. Weight						 	
Total Weight							
				L			
2B							
No. Calves							
Ave. Weight							
Total Weight							

© Copyright American Association of Bovine Practitioners; open access distribution.

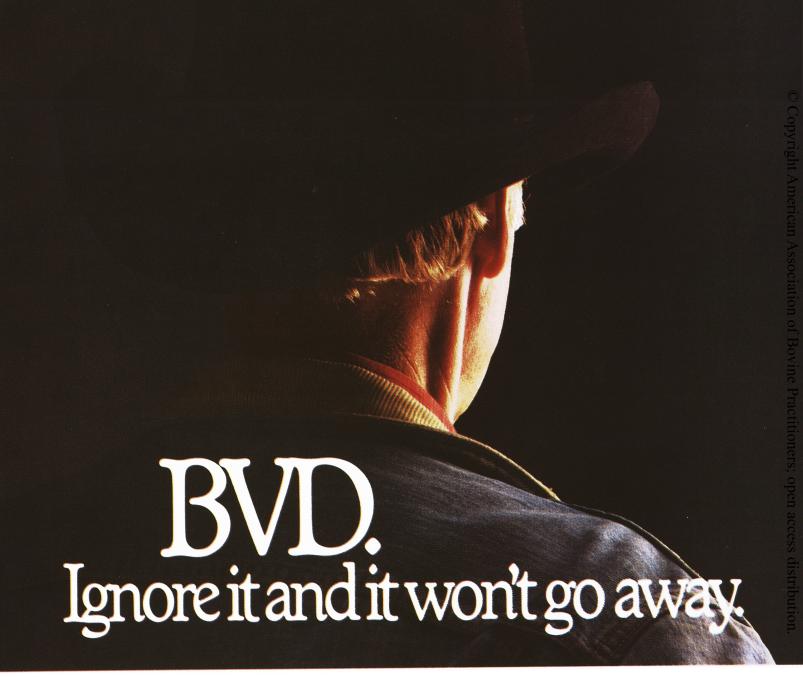
ĒĒ P. 2. 80 63 43 43 63 Conc. Hear This Period Expected Pres. Third 20 Days 20 20 20 20 20 Cows. Julian Date 55 | 195 | 140 80 P P End 60 Days 115 195 Ave. Calv Bate Preg 63 80 33 Conc 43 43 63 Prev. Heat This Preg. Per. Second 20 Days 20 20 20 Cow. 20 20 20 9 175 120 PP Julian Date End 40 Days 115 175 Ave. Calv Date 55 16 13 \vdash ∞ Preq. 6 9 Expected 80 63 33 63 Conc 43 43 In Heat 20 14 20 20 12 4 First 20 Days 100 100 20 | 100 70 19 61 20 20 20 20 . E 20 Julian Date P.P 155 100 n [--| H \vdash \supset End 20 Days G ٦ G Г G Ave. Calving 55 115 Σ Σ Σ Σ Н 4-24 2-24 32

COW WORKSHEET

Problem #5

NOVEMBER, 1984 177

important. The first step is to get an estimate of how many calves were dropped in the different weeks of the calving season. This should then be related to the breeding season to ascertain when cows are being bred. Next, an estimate of the amount and quality of forage availabe in different months of the year should be made. A chart which shows the nutrient requirements of cows should be obtained. A breeding season should be selected so that nutrient requirements of cows match as nearly as possible the available forage supply. The present calving pattern should be compared with the desired calving pattern. Changes that need to be made can then be made intelligently. Sometimes the breeding season can be shortened with only small losses in calf numbers the first year. Other times rather drastic changes must be made. There are two possible methods.


First, a plan is developed in which the breeding season is shortened two to four weeks per year. A heifer development program where heifers are bred only 45 days is an important part of this program and must be implemented or the plan will not work. This will be discussed in another paper. Second, a plan can be developed in which cows are bred in a fall and spring program. Forage supply must be carefully evaluated in this type of program. Calf numbers may actually be increased in this program.

An example of how the breeding season might be shortened from 150 days to 60 days follows. Thirty replacements per 100 cows are added each year for 3 years. To get these 30 replacement heifers calving in a 45-day period, 35 heifers are bred and open heifers culled. The cost per animal in the herd is increased from \$250 to \$270. The net return is changed from -\$39 to +\$45. This is assuming a 90% calf drop each year. Generally, when you have a long calving season, the calf crop is lower.

Changing Length of Calving Season

Expected Day							
of Calving	1st year	2nd year	3rd year	4th year	5th year		
1-20 21-40 41-60 61-80 81-100 101-120 121-140	10 10 10 20 20 20 10	30 20 10 20	50 20 20 10	70 25 5	75 20 5		
141-150 Total No.	5						
Pregnant	100	100	100	100	100		
No. Replace- ments Saved	35	35	35	12	12		
Pregnant Replace- ments in herd	10	30	30	30	10		
Cost per Animal	250	270	270	270	250		
Calf Crop Weaned	90	90	90	90	90		
Animals per 100 Calves	127	135	135	135	127		
Lbs. Calf Weaned Per Animal	281	308	336	352	393		
Net Return	39	<u>—</u> 39	18	6	+45		

This particular method resulted in an increase in revenue but a place must be found to carry an extra 25 heifers each year for 3 years. Consequently, this may not be feasible to implement. This could be implemented by checking cows for pregnancy and culling open and late-calving cows. Using this system, the number of cows replaced would be determined by the number of pregnant replacement heifers available to be placed in the herd.

Bovine Virus Diarrhea is probably the most underrated, misunderstood and complex disease in cattle. It's often diagnosed as other diseases due to many common symptoms. Fever, runny noses, coughing, scours and dry rough coats.

Your herd could have BVD and you wouldn't know it's there. Because many times, typical BVD symptoms just don't show up. Still, you're puzzled by a host of other problems, such as weak calves, poor weight gain and abortion.

But the worst part about BVD is that it suppresses the immune system and opens your cattle up to more diseases, such as pneumonia, and shipping fever. Once cattle contract BVD, there is no cure.

Prevent BVD with Triangle[®] 3 It's the killed virus BVD vaccine. Vaccinate with Triangle-3 this Fall when you are pregnancy testing or working your cattle and protect against BVD, plus IBR

and PÍ-3. With Triangle-3 you can vaccinate pregnant cows without the risk of abortion. Unlike some other BVD combination vaccines, Triangle-3 contains no modified live virus to suppress the immune system. So, it won't make your cattle susceptible to other diseases.

This year, don't turn your back on BVD. See your veterinarian and insist on Triangle-3, the killed virus BVD vaccine.

TRIANGLE 3
Killed virus BVD, IBR, PI-3 vaccine
Fort Dodge Laboratories
Fort Dodge, lowa 50501